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ABSTRACT 

Propionibacterium thoenii strain PI27 produces the bacteriocin propionicin PLG-1. 

Goals of this study were to increase the sensitivity of the standard well difilision assay system 

for bacteriocin activity, to improve production of propionicin PLG-1 under controlled 

conditions in a fermenter, and to obtain the amino acid sequence and composition of the 

purified bacteriocin. 

For the well difilision assay, a S-nun deep base layer that contained 2.5% agar, 0.85% 

NaCl and 0.1% Tween 80 was used. Plates were incubated at 37°C for 2 h before adding 

bacteriocin samples to the wells. Lactobacillus delbrueckii ATCC 4797 was used as indicator 

strain, rather than Propionibacterium acidipropionici P5. Large, clear zones of inhibition 

could be measured after 12 h of incubation. Recovery of bacteriocin from the culture 

supernatant was improved by adding 0.1% Tween 80 to buffer used for dialysis and 

resuspension of precipitated protein. 

Bacteriocin production was compared in six different media under controlled conditions 

in a fermenter: 12.5% beet molasses; 9% com steep liquor; combinations of these media at 

1:3,1:1, and 3:1 volivol ratios; and the standard growth medium, sodium lactate broth. Cell 

populations reached lO' cells/ml in all media. Maximum production of propionicin PLG-1 

was obtained in 3 :1 beet molassesxom steep liquor, and was 5 times greater than in sodium 

lactate broth. Measurable activity was detected after 4 days of culture incubation. 
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Fed-batch fermentations were conducted for 21 days in sodium lactate broth with regular 

feedings of sodium lactate. Average concentrations of vdable cells were higher than in batch 

fermentations: 2.2 x lO' cells/ml vs. 3.7 x 10* cells/ml. Propionic acid concentrations were in 

excess of 30 g/1 and acetic acid concentrations were over 10 g/1 by the end of fed-batch 

fermentation. Bacteriocin activity ranged between 100 and 184 AU/ml in three fed-batch 

fermentations; in contrast 8 AU/ml was the highest titer obtained in batch fermentation. After 

reaching its maximum value at 16-17 days, bacteriocin activity dropped sharply wdth 

continued incubation. This suggests production of an inhibitor or of proteolytic activity. 

Propionicin PLG-1 was purified to homogeneity by precipitation with 75% saturated 

ammonium sulfate followed by ion exchange column chromatography and reversed-phase 

high-performance liquid chromatography. According to amino acid composition analysis, 

propionicin PLG-1 is composed of 99 amino acid residues, of which 42% are hydrophobic 

(Ala, He, Leu, Val, and Pro); calculated molecular weight is 9,328 d. The N-terminal amino 

acid sequence is: NH2-'Asn-^VaI-^Asp-*Ala(Thr)-'Arg-^Thr(Cys)-'Ala(Thr)-'Arg-'Thr(Ala)-

'°Pro. No homology of this sequence to sequences of other bacteriocins from lactic acid 

bacteria was seen in a search of the SWISS-PROT data bank. 
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INTRODUCTION 

Bacteriocins are defined as bactericidal proteins with a narrow spectrum of activity 

targeted toward species related to the producer culture (Tagg et al., 1976). Because 

bacteriocins are natural products of many microorganisms associated with foods, there is 

currently much interest in their use as natural food preservatives. 

Lactic acid bacteria produce many antimicrobial agents, such as lactic acid, H2O2, 

diacetyl, and bacteriocins (Kiaenhammer, 1988). Numerous bacteriocins fi^om gram-positive 

bacteria, particularly from lactic acid bacteria, have been identified, but only a few bacteriocins 

have been found in propionibacteria. 

Among the dairy propionibacteria, two bacteriocins have been reported: propionicin 

PLG-1 from Propionibacterium thoeniiV\21 (Lyon and Glatz, 1991; Lyon and Glatz, 1993) 

and jenseniin G fi-om P.jemenii P126 (Grinstead and Barefoot, 1992). 

Propionicin PLG-1, a bacteriocin produced by P. thoenii PI27, shows promise as a 

biopreservative because of its broad spectrum of activity and its effectiveness against some 

psychrotrophic spoilage organisms (Lyon a/., 1993). Propionicin PLG-1 has been 

produced in batch culture incubated for 14 days, but measured levels of activity have been low 

(Lyon and Glatz, 1993). Propionicin PLG-1 was purified to homogeneity by ammonium 

sulfate precipitation, ion-exchange chromatography and isoelectric focusing (Lyon and Glatz, 

1993), but amino acid composition and sequence have not been determined. 
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This dissertation addresses attempts to increase production of bacteriocin, to obtain 

highly purified preparations of bacteriocin, and to characterize propionicin PLG-1. 

Dissertation organization. This dissertation follows the alternate format and contains, 

in addition to a literature review and an overall summary, three papers that will be submitted 

to scholarly journals. Each manuscript is written according to the American Society for 

Microbiology format. The first manuscript is coauthored by the candidate and by Hsing-Yi 

Hsieh, an M.S. degree candidate in Food Science and Human Nutrition who is also using this 

manuscript as part of her M.S. thesis. Research for this manuscript was conducted 

cooperatively by the candidate and Ms. Hsieh, and manuscript preparation was also completed 

cooperatively. All research and writing for the two other manuscripts were conducted by the 

candidate. 



www.manaraa.com

3 

LITERATURE REVIEW 

Introduction. Biopreservatives are antimicrobial compounds of animal, plant, and 

microbial origin and have long been used in food without any known adverse efifects on 

human health. Use of biopreservatives can enhance the safety and extend the shelf life of food 

(Ray, 1992). Tagg et al. (1976) defined bacteriocins as bactericidal proteins with a narrow 

spectrum of activity targeted toward species related to the producer culture. Because 

bacteriocins are proteins and natural, there is tremendous interest in their use as a novel means 

to ensure the safet}' of food. 

Recently many bacteriocins have been purified to homogeneity, and the amino acid 

sequences of many purified bacteriocins have been determined and compared. This has 

brought some order into the identification of unique bacteriocins. For example, the primary 

amino acid sequence of pediocin PA-1 reported by Henderson et al. (1992) was identical to 

that of the bacteriocin produced \iy Pediococcus acidilactici, which was isolated fi'om 

commercial cultures (Lozano et al., 1992). Therefore, Lozano et al. (1992) have also termed 

this bacteriocin pediocin PA-1 in order to avoid confiision. Many other bacteriocins also 

share homology with each other. Obtaining characterization data on purified bacteriocins will 

minimize the risk of overiapping of research and confusion in identification of these 

compounds. This literature review will summarize recent information on assay methods, 

production of bacteriocins, purification, characterization and mode of action of bacteriocms. 
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Assay methods for bacteriocins. Assay methods to assess bactericidal activity, one 

criterion in the definition of a bacteriocin, have been used for many years. Direct or deferred 

antagonism are methods generally used to detect bacteriocin activity. These methods include 

(1) spotting culture supematants on indicator lawns; (2) cross-streaking bacteria; (3) 

overiapping colonies of the producer strain with an indicator lawn; (4) agar well difdision of 

culture supernatant; (S) the flip plate method (Muriana and Luchansky, 1993). 

Various modifications of agar plate diffusion assays are the most v^dely used methods 

even though the limitations of such assays are generally recognized (Tagg and McGiven, 

1971). For example, it cannot be determined if cells are killed or only inhibited fi-om growing. 

Generally, the inhibition zone size is determined by diffusion of antimicrobial compounds 

including bacteriocin, and the growth rate of the indicator strain (Linton, 1983). Large zones 

of inhibition are usually formed when the indicator strain is slow growing (Piddock, 1990). 

Methods of quantitatively estimating the activity of a bacteriocin have been based on the 

critical dilution of antagonistic activity (Hoover and Harlander, 1993). Briefly, diluted culture 

supernatant (including bacteriocin) is spotted on an indicator lawn and activity is quantitated 

subjectively in arbitrary units (AU) of bacteriocin activity. Generally, the AU is the reciprocal 

of the dilution of bacteriocin that last caused inhibition (Mayr-Harting et al., 1972). 

Disadvantages of this method are the frequently subjective judgment of inhibition and 

differences in assay sensitivity because of inconsistent procedures among laboratories (Hoover 

and Harlander, 1993). The titration of bacteriocin activity is subject to error depending upon 

the reproducibility of the indicator cell concentration and the ability of the investigator to 
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determine the last dilution showing complete inhibition. Therefore, the AU value is only an 

approximate rather than a precisely quantitative measure of bactetiocin activity (Muriana and 

Luchansky, 1993). 

An enzyme-linked immunosorbent assay (ELISA) using polyclonal antiserum for nisin 

detection was used with commercial cheese samples by Falahee et al. (1990). This method 

had a limit of detection of 1.9 x 10'^ i.u./ml and yielded results that correlated well with results 

of the bioassay that measured inhibition ofMicrococcus flavus NCIB 8166. Skytta and 

Mattila-Sandholm (1991) developed a quantitative method using automated turbidometry to 

assess the antimicrobial efficacy of bacteriocin-like inhibitors produced by Pediococus 

dammosus and Pediococcus pentosaccus. Growth of the test strain {Psedomonas aeruginosa 

and other organisms) was kinetically monitored and various growth curve parameters were 

used as quantitative indicators of inhibition. 

Recently, several investigators have developed new detection methods using 

microdilution wells (Toba et al., 1991), hydrophobic grid membrane filters (Ryser and 

Richard, 1992), and other simplified techniques (Bebkeroum et al., 1993). These methods are 

very convenient, rapid, and sensitive for screening bacteriocin-producing bacteria. 

Production of bactetiocin. Most studies of bacteriocins begin with detection of 

inhibitory activity on an agar medium. However, further characterization of bacteriocins is 

facilitated by their production in liquid medium. The ability to obtain a concentrated crude 

preparation of bacteriocin by optimiang production parameters greatly simplifies recovery of 

bacteriocin in subsequent purification steps, because severe losses of activity may occur 
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during the course of protein purification (Muriana and Luchansky, 1993). Most studies 

performed to optimize bacteriocin production have used commercial media to provide a rich 

supply of growth nutrients. 

The effects of several factors on production of nisin by Lactococcus lactis, pediocin AcH 

hy Pediococcus acidilactici, leuconocin Lcml hy Leuconostoc camosum Lml and sakacin A 

by Lactobacillus sake LB 706 were studied by Yang and Ray (1994). Production of a 

bacteriocin in a simple medium can be increased by growing the cells at optimum pH and 

supplementing with nutrients specific for the particular species/strain. Also, conditions that 

provide high cell density resulted in high bacteriocin production. Economical media such as 

trypticase glucose yeast-extract (TGE) or TGE buffer broths with food-grade ingredients 

could be used to obtain high bacteriocin yields. 

Effect of growth medium. Production of an unnamed bacteriocin by Streptococcus 

mutatis was shown to be influenced by the growth medium (Rogers, 1972). A medium 

containing Trypticase (BBL), yeast extract, sodium chloride, potassium phosphate, and agar 

was the most effective for bacteriocin production. 

The effect of several inorganic and organic acids on nisin production was studied by 

Kalra and Dudani (1974). Potassium chloride and calcium chloride increased production of 

nisin. Of the organic salts studied, sodium citrate, sodium acetate and sodium lactate 

increased nisin production, while sodium oxalate depressed it. Vuyst and Vandamme (1992) 

reported that carbon source regulation appears to be a major control mechanism for nisin 

production. The influence of different phosphorous and nitrogen sources on Lactococcus 
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lactis subsp. lactis NIZO 22186 growth and nisin production was studied by Vuyst and 

Vandamme (1993). Potassium dihydrogen phosphate (KH2PO4) was found to be the best 

phosphorous source for nisin production. A complex medium with cotton seed meal as 

nitrogen source also gave very high activity. 

Addition of some ingredients to the medium was necessaiy to improve the yields of 

bacteriocin. Yeast extract (Rogers, 1972; Liao et al, 1993; Parente and Hill, 1992) and beef 

extract (Kaiser and Montville, 1993) increased bacteriocin activity. Addition of Tween 80 is 

likely to increase production of some bacteriocins such as pediocin AcH (Biswas et al., 1991), 

lactococcin G (Nissen-Meyer et al., 1992), jenseniin G (Barefoot, unpublished data), 

enterocin 1146 (Parente and Hill, 1992) and curvaticin FS47 (Garver and Muriana, 1994). 

This increase in measured activity against an indicator strain could be caused by increased 

production of the bacteriocin or by improved diffusion of the bacteriocin in the assay system. 

Several studies of inexpensive media have been reported. Liao et al. (1993) showed that 

whey permeate complemented with yeast extract supported growth and bacteriocin 

production by Pediococcus acidilactici P02; the medium contained all the minerals and trace 

elements required for growth. Barber et al. (1979) developed a molasses fermentation 

medium for the industrial production of bacteriocin by Clostridium acetobutylicum. Biswas et 

al. (1991) reported that high levels of pediocin AcH could be produced by Pediococcus 

acidilactici H in a simple medium (TGE broth) consisting of relatively inexpensive, food-

grade ingredients. 
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Effect of culture conditions. Bacteriocin production is also influenced by culture 

conditions such as pH, temperature, and growth phase. The pH of the medium is particularly 

important. For example, Parente et al. (1994) reported that pH was an important factor in the 

production of lactococcin 140 hy Lactococcus lactis 140NWC. A maximum activity of 1.S4 x 

10* AU/ml was obtained at pH 5.5. In contrast, the optimal pH for growth and lactic acid 

production was between 6.0 and 6.5. Maximum production of piscicolin 61 by 

Camobacterium piscicola LV61 was obtained at pH 6.5 (Schillinger et al, 1993); of 

bavaricin MN by Lactobacillus bavaricus MN at pH 6.0 (Kaiser and Montville, 1993); of 

mesenterocin 5 by Leuconostoc mesenteroides subsp. mesenteroides UL5 at pH 5.0 (Daba et 

al., 1993); of leuconocin S by Leuconostoc strain OX at pH 6.5-7.0 (Lewus et al., 1992); of 

lactacin B by Lactobacillus acidophilus N2 at pH 6.0 (Barefoot and Klaenhammer, 1984); 

and of enterocin 1146 by Enterococcusfaecium DPCl 146 at pH 5.5-6.5 (Parente and Hill, 

1994). In contrast, production of acidocin 8912 hy Lactobacillus acidophilus TK8912 was 

not affected in the pH range 5 to 7; rather, the incubation temperature seemed to be more 

important in affecting acidocin 8912 production in this study (Kanatani et al., 1992). 

Optimal production of bacteriocin can occur at different growth phases. Some 

bacteriocins such as lactococcin 140 and nisin are produced during the exponential phase 

(Parente et al., 1994; Vuyst and Vandamme, 1992). During the late exponential and early 

stationary phase of growth, many bacteriocins, such as nisin (Hurst, 1981), helveticin J 

(Joerger and Klaenhammer, 1986), lactocin S (Mortvedt and Nes, 1990), pediocin AcH 

(Biswas et al., 1991), propionicin PLG-1 (Lyon and Glatz, 1993), and pediocin SJ-1 (Schved 
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et ai, 1993) are produced extracellularly. This suggests that these bacteriocins are secondary 

metabolites. 

Although most bacteriocins are studied in batch culture, continuous culture has been used 

for bavaricin MN production (Kaiser and Montville, 1993). The level (6,400 AU/ml) of 

bavaricin MN produced during continuous culture was twice that seen in batch fermentations 

with the same medium, pH, agitation rate, and inoculum size. This level was maintained, 

independent of growth rate (0.058 - 0.205 h"'), for 345 h. 

Recently, Jones et al. (1994) studied lactoferricin, a new antimicrobial peptide derived 

from acid-pepsin digestion of bovine lactoferrin. This lactoferricin is an example of 

production of a more effective or new bacteriocin by protein modification or engineering from 

a mother compound. 

Genetic determinants for production. The genetic determinants of bacteriocin 

production and immunity to bacteriocins have great potential as genetic markers. 

Bacteriocin production and immunity are frequently associated with plasmid DNA 

(Klaenhammer, 1988). Production of lactocin S hy Lactobacillus sake L45 and of acidocin 

8912 by Lactobacillus acidophilus TK8912 was demonstrated to be encoded by plasmids of 

50 kb (32.9 MDa; pCIMl) and 10.5 MDa (pLA 103) (Mortvedt and Nes, 1990; Kanatani et 

al., 1992), respectively. Gonzalez and Kunka (1987) reported the association of a 6.2-MDa 

plasmid (pSRQl 1) and pediocin PA-1 production. Production of pediocin SJ-1 was 

associated with a 4.6 MDa plasmid (Schved et al., 1993). Other plasmids encoding 

bacteriocin production and immunity are the 22-kb (14.5 MDa) plasmid of Camobacterium 
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piscicola LV61 (Schillinger et al., 1993), the 40- and 49-MDa plasmids of Camobacterium 

piscicola LV17 (Ahn and Stiles, 1990), and the 10-kb (6.6 MDa) plasmid of Lactococcus 

lactis subsp. lactis ADRIA 85L030 (Dufour et al., 1991). 

On the other hand, there are several reports of chromosomal location of genetic 

determinants of bacteriocin production. For instance, production of helveticin J by 

Lactobacillus helveticus 481 was shown to be associated with the chromosome (Joerger and 

Klaenhammer, 1986). Two bacteriocins produced by propionibacteria, propionicin PLG-1 

from Propionibacterium thoenii P127 (Lyon and Giatz, 1993) and jenseniin G from 

PropionibacteriumJemenii PI26 (Grinstead and Barefoot, 1992), were also reported to be 

chromosomally located. 

Purification methods for bacteriocins. Several techniques have been used to obtain 

purified or partially purified bacteriocins. For a brief review of purification methods, see 

Muriana and Luchansky (1993). The purification scheme may be varied for some 

applications. Highly purified preparations would be needed for determination of a 

bacteriocin's amino acid composition and sequence. However, high yields of active 

bacteriocin will be the focus of a food biopreservative system. The ability to assay for the 

target protein during purification steps is important. Target bacteriocins can be assayed by 

determination of biological activity and by other analytical methods, including SDS-PAGE 

(sodium dodecyl sulfate-polyacrylamide gel electrophoresis). 

Most purifications start with a method that concentrates bacteriocins from culture 

supematants, because bacteriocins usually are extracellular products. Ammonium sulfate 
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precipitation is well established as an initial step in the purification process. Anunonium 

sulfate fractionation is an effective method because variations in the distribution of 

hydrophobic and hydrophilic regions allow specific proteins to precipitate over a narrow range 

of salt concentrations (Muriana and Luchansky, 1993). 

Dialysis and ultrafiltration are valuable methods of concentrating and purifying 

bacteriocins. By using membranes of specific pore size, the researcher can retain proteins 

above a particular size and allow smaller proteins to pass through. 

Several methods of chromatography, such as gel filtration, ion exchange, and/or 

hydrophobic interaction chromatography, have been recommended for achieving significant 

purification of bacteriocins. Especially, reverse-phase chromatography has been frequently 

used as a final step for several bacteriocins, including pediocin PA-1 (Lozano et al., 1992), 

curvacin A (Tichaczek et al., 1992), sakacin A (Hoick et al, 1992), plantaricin A (Nissen-

Meyer et al., 1993), bavaricin A (Larsen et al, 1993), and piscicolin 61 (Hoick et al, 1994). 

High performance liquid chromatography (HPLC) as well as hydrophobic interaction 

chromatography have also been used to obtain more highly purified bacteriocin preparations. 

Separation on reversed-phase supports in HPLC has been used to obtain highly purified 

preparations of leucocin A-UAL 187 (Hastings et al, 1991), lactacin F (Muriana and 

Klaenhammer, 1991), mesentericin Y105 (Hechard et al, 1992), lacticin 481 (Piard et al, 

1992), salivaricin A (Ross et al, 1993), curvaticin FS47 (Garver and Muriana, 1994), and 

staphylococcin 1580 (Sahl, 1994). The hydrophobic nature of these bacteriocins allows their 

purification by reversed-phase HPLC. 
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In reversed-phase chromatography, the weak mobile phase is usually 0.1% (v/v) 

trifluoroacetic acid (TFA), while the eluting mobile phase is an organic solvent such as 2-

propanol or acetonitrile. Once the sample is injected onto the column in the weak mobile 

phase, each protein is retained until the appropriate concentration of organic solvent displaces 

it from the support. The sample peak shape (resolution) of the bacteriocin in the 

chromatogram is often veiy sharp, as a result of displacement elution. However, because of 

the acidity and the organic solvents needed to elute bacteriocins from the extremely 

hydrophobic reverse phase chromatography stationary phase, protein denaturation and loss of 

bacteriocin activity often occur. In many cases, bacteriocin acti\dty cannot be retrieved after 

the tertiary structure is disrupted. Therefore, reversed-phase HPLC systems can be used as a 

preparative technique only for those bacteriocins that are stable in organic solvents, or for 

bacteriocins that can renature after unfolding occurs during the elution process (Chicz and 

Regnier, 1990). Many of the completely purified barteriocins obtmned by using reversed-

phase HPLC or chromatography were small highly hydrophobic molecules that apparently 

could easily renature. 

Amino acid composition and N-terminai sequence of bacteriocins. Amino acid 

composition analysis provides an unportant quantitative parameter in the characterization of 

purified bacteriocins. The most important step in obtaining an unambiguous N-terminal 

sequence is to purify suitable quantities of the bacteriocin in a manner compatible with 

automated or manual Edman degradation procedures. Matsudaira (1990) suggested several 

requirements for obtaining sequences of unknown samples. First, the sample should be 
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relatively pure (>80%). Second, the sample should be free of contaminants such as Tris, 

glycine, sodium dodecyl sulfate (SDS), or acrylamide, which will either affect the performance 

of the sequencing machine or clutter the chromatograms with large artifact peaks. Third, a 

sufficient quantity of sample should be available for analysis. Most sequencing facilities 

request 10-100 pmol of bacteriocin for N-terminal sequence analysis. If no sequence is 

obtained from 100 pmole, then one would suspect that the bacteriocin has a blocked N-

terminus. If the N-terminus of a bacteriocin is blocked, then it must be cleaved chemically 

(CNBr cleavage) or enzymatically (proteolytic digestion) to generate internal peptides with 

unblocked N-termini. In this case, a 5-fold increase in sample size is necessary to do chemical 

or enzymatic cleavage (Matsuddra, 1990). 

Purification, characterization, and comparison of bacteriocins of various genera. 

Recent advances have been made in the purification, amino acid sequencing, and 

determination of other characteristics of various bacteriocins. Homologies among many 

bacteriocins have been found. This section will summarize such results. 

Lactobacilli. Information on purification and characterization of bacteriocins produced 

by lactobacilli is sununarized in Table 1. 

Acidocin 8912, a bacteriocin produced hy Lactobacillus acidophilus TK8912, was 

purified by ammonium sulfate precipitation and successive chromatographic steps on CM-

Cellulose, Sephadex G-50, Sephadex G-25, and reversed-phase HPLC on Aquapore RP-300 

(Tahara et al., 1992). Reversed-phase HPLC, the final step, gave a single symmetrical peak 

of activity that was superimposable on a major protein peak. The overall procedure resulted 
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Table 1. Purification, characterization, and comparison of bacreriocins of lactobaciili 

Bacteriocin Producer Medium* Purification 
scheme' 

Molecular mass Amino acid 
analysis 

Amino acid 
sequence 

Reference 

Acidocin 
8912 

L. acidophilus 
TK8912 

MRS ASP, lEC, GFC, 
reversed-phase 
HPLC 

5,200 Da (by 
SDS-PAGE) 

Yes Yes(NS'=) Tahara et al. 
(1992) 

Bavaricin A L. bavaricus MRS ASP, CEC, HIC, 3,500-4,000 Da ND" Yes (41; Larsen et al. 
MI401 RPC (by SDS-PAGE) SWISS-

PROT) 
(1993) 

Brevicin 27 L. brevis 
SB27 

MRS ASP, CEC < 6.2 kDa (by 
SDS-PAGE) 

ND ND Benoit et al. 
(1994) 

Caseicin 80 L. casei B80 TJM UF,ffiC, 
Superose column 

40-42 kDa (by 
GFC) 

ND ND Rammelsbe 
g et al. 
(1990) 

Curvacin A L. curvatus MRS ASP, CEC, fflC, ND Yes (38-41 Yes (30; Tichaczek et 
LTH1174 RPC residues) SWISS-

PROT) 
al. (1992) 

Curvaticin L. curvatus MRS ASP, fflC > 10 kDa (by ND ND Sudirman et 
13 SB13 UF) al. (1993) 
Curvaticin L. curvatus MRS ASP, SPE, 4.07 kDa (by ND Yes Garver and 
FS47 FS47 reversed-phase 

HPLC 
MS) (SWISS-

PROT) 
Muriana 
(1994) 

Helveticin J L. helveticus 
481 

MRS ASP, GFC 37 kDa (by 
SDS-PAGE) 

ND ND Joerger and 
Klaenhamm-
er(1986) 

Helveticin L. helveticus MRS ASP, dialysis ND ND ND Vaughan et 
V-1829 al. (1992) 
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Table 1. Continued. 

Bacteriocin Producer Medium* Purification scheme* Molecular mass Amino acid 
analysis 

Amino acid 
sequence 

Reference 

Lactacin B L. acidophilus 
N2 

MRS lEC, UF, successive 
GFC 

6,00-6,500 Da 
(by GFC) 

ND ND Barefoot 
and 
Klaenhamm-
er(1984) 

Lactacin F L. acidophilus 
11088 

MRS ASP, GFC, 
reversed-phase 
HPLC 

2.5 kDa (by 
SDS-PAGE) 

Yes (56 
residues) 

Yes (25; 
NBRF) 

Muriana and 
Klaenhamm 
er(1991) 

Lactocin 27 L. helveticus 
strain LP27 

APT Chloroform 
precipitation, 
fireeze-dry, GFC, 
more GFC 

12.4 kDa (by 
SDS-PAGE) 

Yes ND Upreti and 
Hinsdill 
(1973) 

Lactocin S L. sake L4S MRS ASP, lEC, fflC, 
RPC, GFC 

ND Yes (33 
residues) 

Yes (C-
terminus; 
SWISS-
PROT) 

Mortved et 
al. (1991) 

Piantaricin 
A 

L. piantaricin 
C-11 

MRS ASP, CEC, fflC, 
RPC 

2,687±30 Da (a) 
and 2,758±30 Da 
(P)(byMS) 

ND Yes (21 
residues for 
a and 22 
residues for 
P) 

Nissen-
Meyer et al. 
(1993) 

Piantaricin 
C 

L. plantarum 
LL441 

MRS 
(0.6% 
glucose) 

ASP, fflC, CEC 3.5 KDa (by 
SDS-PAGE) 

ND Yes 
(SWISS-
PROT) 

Gonzalez et 
al. (1994) 
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Table 1. Continued. 

Bactericoin Producer Medium* Purification scheme* Molecular mass Amino acid 
analysis 

Amino acid 
sequence 

Reference 

Plantaricin L plantarum MRS ASP, CEC, fflC <SkDa ND ND Rekhif et al. 
LC74 LC74 (1994) 
Plantaricin 
S 

L. plantarum 
LPCOlO 

MRS ASP,UF 2.5 kDa(by 
SDS-PAGE) 

ND ND Jimenez-
Diaz et al. 
(1993) 

Sakacin A L sake LB706 MRS ASP, EC, fflC, 4,308.7 Da (by Yes (41 Yes(GCG Hoick et al. 
RPC MS and 

calculation) 
residues) program) (1992) 

Sakacin M L. sake 148 MRS Concentration, 
lyophilization, GFC 

4,640 Da (by 
GFC) 

ND ND Sobrino et 
al. (1992) 

Sakacin P L. sake LTH 
673 

MRS ASP, CEC, fflC, 
RPC 

ND Yes (36-38) Yes (41 
residues; 
SWISS-
PROT) 

Tichaczek et 
al. (1992) 

'Abbreviations: MRS, APT are commercially available media; TJM, tomato juice medium; ASP, ammonium sulfate 
precipitation; HIC, hydrophobic interaction chromatography; GFC, gel filtration chromatography; UF, ultrafiltration; CEC, 
cation exchange chromatography; lEC, ion exchange chromatography; RPC, reverse-phase chromatography; SPE, solid-phase 
extraction; HPLC, high-performance liquid chromatography; MS, mass spectrometry 
""ND, Not determined 
I^S, Not searched in computer databases 
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in about 2,870-fold purification with a yield of 12%. The amino acid composition of acidocin 

8912 was determined; the molecular weight was 5400. The sequence of 24 consecutive N-

terminal amino acid residues of acidocin 8912 was identified as follows; NH2-Lys-Thr-His-

Tyr-Pro-Thr-Asn-Ala-Xaa-Lys-Ser-Leu-Arg-Lys-Gly-Phe-Xaa-Glu-Ser-Leu-Arg-Xaa-Thr-

Asp (Xaa represents an unidentified residue). 

Bavaricin A was produced during growth oiLactobacillus bavaricus MI401 (Larsen et 

al, 1993). At 30°C, the highest activity (10,000 AU/ml) was detected in the late log phase. 

Bavaricin A was purified to homogeneity by ammonium sulfate precipitation, ion exchange, 

hydrophobic interaction and reverse-phase chromatography. Bavaricin A was eluted fi'om the 

reverse-phase column at 31% (v/v) 2-propanol, with recovery of 80% of activity. SDS-PAGE 

of this bacteriocin showed a molecular weight of3,500-4,000 Da. By amino acid sequencing 

41 amino acids were determined. When the sequence was compared to the sequences of other 

proteins fi-om lactic acid bacteria in the SWISS-PROT data bank, bavaricin A was found to 

share 66% homology with pediocin PA-1 produced by Pediococcus acidilactici (Marugg et 

al., 1992) and 39% homology with leucocin A-UAL (Hastings et al., 1991). 

Two bacteriocin producers have been isolated by employing a catalase-containing 

bacteriocin-screening medium for lactobacilli. The bacteriocins (curvacin A and sakacin P) of 

both of these lactobacilli were produced in the late exponential growth phase. Both 

bacteriocins were purified to homogeneity by ammonium sulfate precipitation, cation 

exchange, hydrophobic interaction and reverse-phase chromatography. Finally, the specific 

activities of curvacin A and sakacin P increased by more than 15,000-fold and 5,000-fold, 
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respectively, with yields of 64% and 21% at the end of purification. Amino acid composition 

and sequence analysis revealed that curvacin A and sakacin P are small peptides of 38-41 and 

41 amino acid residues, respectively. In the N-terminal region, the two bacteriocins share the 

segment -Tyr-Gly-Asn-Gly-Val-. This conserved region is speculated to be responsible for 

the similar inhibitory spectra of curvacin A and sakacin P (Tichaczek et al., 1992). The 

sequence of curvacin A and sakacin P had no similarity to the amino acid sequences of 

lactocin S or of other previously characterized bacteriocins (Holo et al., 1991; Muriana and 

Klaenhammer, 1991) or lantibiotics (Kaletta and Enn, 1989; Schnell et al, 1988; Kellner et 

al., 1988) as revealed by a search of the SWISS-PROT data bank. 

Curvaticin FS47, a bacteriocin produced by Lactobacillus curvaius FS47, was purified by 

40% ammonium sulfate precipitation, solid-phase extraction on Cig Sep-Pak Cartridges 

(Millipore Corp., Milford, Mass.), and reversed-phase HPLC (Garver and Muriana, 1994). 

The average mass of curvaticin FS47 was 4.07 kDa as determined by mass spectrometry. 

Actually, the size determined by mass spectrometry differed fi'om that determined by SDS-

PAGE (< 2 kDa). This difference has been attributed to the nonlinear migration of small 

peptides on SDS-PAGE (Hastings et al., 1991; Henderson et al., 1992; Muriana and 

Klaenhammer, 1991; Stofifels et al, 1992). Amino acid sequencing of this bacteriocin was 

performed by the Edman degradation reaction, and 31 residues were identified with 

confidence starting with NH2-Tyr-Thr-Ala-Lys-Glu-. The partial sequence of curvaticin FS47 

was compared with the sequences of other proteins by using four protein data bases (PDB, 

Swiss-Prot and Swiss-Prot Update, PIR, and GenPept and GenPept Update). No protein 
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sequences with significant homology to curvaticin FS 47 were identified except for proteins 

with glycine-rich sequences that showed homology to the Gly residues in curvaticin FS47. 

Lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088, was purified and 

characterized by Muriana and Klaenhammer (1991). Purification by ammonium sulfate 

precipitation, gel filtration, and reversed-phase HPLC resulted in a 474-fold increase in 

specific activity. The purified lactacin F was identified as a 2.5-kDa peptide by SDS-PAGE. 

Amino acid composition studies indicated that lactacin F may contain as many as SO to 56 

residues. In this study, amino acid sequence analysis of purified lactacin F identified 2S 

residues fi'om the N-terminus. Sequence data showed that lactacin F contains an N-terminal 

arginine, atypical in nonprocessed gene-encoded proteins. The authors suggested that the 

purified lactacin F peptide may be the product of posttranslational processing. A computer 

search of the N6RF data base has not identified sequences that share significant homology 

with the partial sequence of lactacin F. 

Isolation and characterization of lactocin 27 fi-om a )^omo^QTmexiiz \̂VQ Lactobacillus 

helveticus strain LP27 was studied by Upreti and Hinsdill (1973). Lactocin 27 was purified by 

chloroform (25 ml/liter in H2O) precipitation, fi'eeze-drying, and successive gel filtration 

chromatography. Amino acid composition of purified lactocin 27 is quite similar to that of the 

bacteriocin produced hyL.fermenti (Deklerk and Smit, 1967). Both have traces of 

methionine and quite high contents of glycine, alanine, and aspartate. Cysteine and cystine 

seem to be absent in both bacteriocins. The only apparent difference between the two 

bacteriocins was that an active protein was not dissociated fi'om the lipocarbohydrate-protein 
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complex of the L. fermenti bacteriocin by hydrolytic techniques (Deklerk and Snut, 1967), 

whereas lactocin 27 seems to be a small glycoprotein (Upreti and Hinsdill, 1973). 

Lactocin S, a bacteriocin produced by Lactobacillus sake L4S, was purified to 

homogeneity by ion exchange, hydrophobic interaction and reverse-phase chromatography, 

and gel filtration (Mortvedt et al., 1991). The purification resuhed in a 40,000-fi9ld increase 

in specific acitvity. Amino acid composition analysis revealed that lactocin S contained 

approximately 33 amino acid residues, of which about 50% were nonpolar (alanine, valine, 

and leucine). Because the N-terminus was blocked, the amino acids at the C-terminus were 

determined, following cyanogen bromide cleavage at the internal methionine. The partial 

amino acid sequence of lactocin S is Met-Glu-Leu-Leu-Pro-Thr-Ala-Ala-Val-Leu-Tyr-Xaa-

Asp-Val-Ala-Gly-Xaa-Phe-Lys-Tyr-Xaa-Ala-Lys-His-His, where Xaa represents unidentified 

amino acids associated with cysteine. This is indicated by the fact that two cysteic acids per 

molecule were found on performic acid oxidation of lactocin S. The partial amino acid 

sequence of lactocin S was determined to be unique when it was searched in the SWISS-

PROT data bank, with three proteins showing partial homology with lactocin S: the pectate 

lyase B precursor isolated fi-om Erwinia caratovora (Lei et al., 1987); the bacteriorhodopsin 

precursor isolated fi'om Halobacterium halobium (Katre et al., 1981); and the 6-

aminohexanoate-dimer hydrolase fi'om Flavobacterium sp. strain K172 (Okada et al, 1983). 

The sequences of the pectate lyase B precursor and the bacteriorhodopsin precursor are part 

of a signal sequence. The hydrophobic nature of lactocin S and its homology with these signal 
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sequences suggest the cell membrane as a possible target for lactocin S (Mortvedt et al., 

1991). 

Nissen-Meyer a/. (1993) purified plantaricin A, ZL Lactobacillus plantarum bacteriocin, 

by ammonium sulfate precipitation, binding to a cation exchanger and octyl-sepharose 

(hydrophobic interaction), and reverse-phase chromatography. This resulted in a 1,300-fold 

increase in specific activity and a recovery of about S% of the activity. Interestingly, the 

bacteriocin activity was associated with two peptides (a and P), of which 21 and 22 amino 

acid residues have been sequenced. Nissen-Meyer et al. (1993) suggested that the amino acid 

sequences of the a and |3 subunits indicate pore-forming toxins that create cell membrane 

channels through a "barrel-stave' mechanism (Ojcius and Young, 1991). No significant 

homology of plantaricin A to other known LAB bacteriocins was reported (Nissen-Meyer et 

al., 1993). 

Gonzalez et al. (1994) purified plantaricin C, a bacteriocin produced by a strain of 

Lactobacillus plantarum, by ammonium sulfate precipitation, hydrophobic interaction and 

cation exchange chromatography. Plantaricin C is a peptide of ca. 3,500 Da, according to 

SDS-PAGE. The sequence, obtained with amino terminal sequencing by automated Edman 

degradation, is NHz-Lys-Lys-Thr-Lys-Lys-Asn-Xaa-Ser-Gly-Asp-, where Xaa represents an 

unidentified residue. After the 11th amino acid, the sequence was blocked. No homology to 

the N-terminal sequence of plantaricin C was found in the SWISS-PROT data bank. 

Sakacin A, a bacteriocin produced by Lactobacillus sake LB706, was purified to 

homogeneity by ammonium sulfate precipitation, ion exchange, hydrophobic interaction and 
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FPLC reversed-phase chromatography (Hoick et al., 1992). An increase of more than 9,000-

fold in specific activity, to a final value of250 AU/|Xg protein, was obtained. According to 

complete amino acid sequence data for the purified bacteriocin, sakacin A consisted of 41 

amino acid residues with a calculated MW of4,308.7. Amino acid sequence comparisons 

with the GCG program package revealed no significant homology with other proteins. 

However, sakacin A has been shown to share some homology, especially in the N-terminal 

region, with the newly sequenced bacteriocins leucocin A-UAL187 (Hastings et al, 1991), 

pediocin PA-1 (Lozano et al, 1992) and sakacin P (Tichaczek et al, 1992). Also, sakacin A 

appeared to be very similar in partial sequence to curvacin A (Tichaczek et al, 1992). 

Lozano et al (1992) suggested that bacteriocins may be grouped into families by sequence 

similarity. 

Lactococci. Information on purification and characterization of some of the bacteriocins 

fi'om lactococci is summarized in Table 2. 

Piard et al. (1992) purified lacticin 481, a lanthionine-containing bacteriocin produced by 

Lactococcus lactis subsp. lactis CNRZ 481, by ammonium sulfate precipitation, gel filtration, 

and preparative and analytical reversed-phase HPLC. The overall purification scheme resulted 

in a 107,506-fold increase in specific activity. Lacticin 481 is a single peptide of 1.7 kDa, 

based on SDS-PAGE analysis. However, dimers of 3.4 kDa that also exhibit lacticin activity 

were detected. Amino acid composition of purified lacticin 481 shows the presence of 

lanthionine residues, suggesting that lacticin 481 is a member of the lantibiotic family. No 

striking similarities were noted in amino acid composition between lacticin 481 and other 
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Table 2. Purification, characterization, and comparison of bacteriocins from iactococci 

Bacteriocin Producer Medium* Purification 
scheme' 

Molecular mass Amino acid 
analysis 

Amino acid 
sequence 

Reference 

Lacticin481 L. lactis Elliker ASP, GFC, 1.7 kDa (by Yes (18 or Yes (7 Piard et al. 
subsp. lactis 
CNRZ481 

reversed-phase 
HPLC 

SDS-PAGE) 20 
residues) 

residues; 
NBRF and 
Gen Pro) 

(1992) 

Lactococcin L. lactis 
ADRIA 
85L030 

CG Dialysis, CEC, 
GFC 

2.3-2.4 kDa (by 
GFC) 

ND" ND Dufour et 
al. (1991) 

Lactococcin L. lactis M17 ASP, CEC, RPC ND ND Yes (54 Holo et al. 
A(LCN-A) subsp. 

cremoris 
LMG 2130 

residues) (1991) 

Lactococcin L. lactis LMG M17 (with ASP, CEC, mc. 4,376 Da for ai ND Yes Nissen-
G 2081 0.1% 

Tween 80) 
RPC and 4,109 Da 

for p (by MS) 
Meyer et al. 
(1992) 

Nisin L. lactis 
354/07 

LTB (2.5% 
glucose) 

Extraction, lEC, 
acetone 
precipitation, 
CM-Cellulose 
chromatography 

ND ND ND Bailey and 
Hurst 
(1971) 

'Abbreviations: Elliker, APT, Ml 7 are conmiercially available media; CG is a modified medium contuning glucose, magnesium 
sulfate, K2HPO4, KH2PO4, and iron sulfate; LTB is the semidefined medium containing glucose, meat extract, yeast extract, 
NaCI and Na2HP04; lEC, ion exchange chromatography; CEC, cation exchange chromatography; GFC, gel filtration 
chromatography; ASP, ammonium sulfate precipitation; RPC, reverse phase chromatography; HPLC, high performance liquid 
chromatography; HIC, hydrophobic interaction chromatography; MS, mass spectrometry 
"TW, Not determined 
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lanthionine-containing peptides, such as nisin, subtilin, gallidermin (Kellner et al., 1988), 

epidermin (Allgaier et al, 1986) or pep5 (Kaletta et al, 1989). Of a total of 18 or 20 amino 

acids, only seven were charged, while the remaning were uncharged or nonpolar. Only seven 

residues (NH2-Lys-Gly-Gly-Ser-Gly-Val-Ile) of purified lacticin 481 were sequenced because 

the remaining peptide was not further degraded by the Edman reaction. No sequence 

homologous to this partial sequence of lactacin 481 was found in the National Biomedical 

Research Foundation (NBRF) or Gen Pro data bases. 

Lactococcin A (LCN-A), a bacteriocin produced by Lactococcus lactis subsp. cremoris 

LMG 2130, was purified and characterized by Holo et al (1991). Complete purification was 

performed by ammonium sulfate precipitation, cation exchange chromatography and reversed-

phase fast protein liquid chromatography (FPLC). The overall purification scheme resulted in 

about a 2,000-fold increase of specific activity, with a recovery of 16%. Based on the total 

amino acid sequence of the purified bacteriocin, lactococcin A contains 54 amino acid 

residues, has a calculated molecular weight of 5,778 and is rich in alanine and glycine residues 

(8 of each). LCN-A is definitely different from the two lactococcal bacteriocins nisin (Gross 

and Morell, 1971) and diplococcin (Davey and Richardson, 1984). No significant sequence 

similarity was found to other proteins in the SWISS-PROT or NBRF data bases. 

Lactococcin G was purified to homogeneity by ammonium sulfate precipitation, binding 

to a cation exchanger and octyl-sepharose CL-4B, and reverse-phase chromatography 

(Nissen-Meyer et al, 1992). A 7,000-fold increase in the specific activity was obtained with a 

yield of 20%. The bacteriocin activity of lactococcin G was associated with three peptides. 
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termed ai, a2 and p. Nissen-Meyer et al. (1992) found by amino acid sequence analysis that 

tti and a2 were the same gene product. Molecular weights of4,376 and 4,109 for ai and P, 

respectively, were obtained by mass spectrometry. The complete amino acid sequences of the 

tti (39 amino acid residues) and P (3S amino acid residues) peptides and a major part of the 

sequence of the 02 peptide were found. This study reported the first purification and 

characterization of a bacteriocin that requires for its activity the complementary action of two 

distinct peptides. 

Leuconostocs. Information on the purification and characterization of some of the 

leuconostoc bacteriocins is summarized in Table 3. 

Hastings et a/. (1991) reported that leucocin A-UAL 187, a bacteriocin produced by 

Leuconostoc gelidum UAL 187, was purified by 70% ammonium sulfate or acid (pH 2.5) 

precipitation, hydrophobic interaction chromatography, gel filtration, and reversed-phase 

HPLC, with a yield of 58% of the activity. In this study, ion-exchange chromatography, 

dialysis, and Mgh pH conditions were avoided because these resulted in large losses in activity. 

Isocratic elution with 35% acetonitrile-0.15% trifluoroacetic acid (TFA) gave the best 

separation in reversed-phase HPLC. The molecular weight of leucocin A-UAL 187 was 

3,930.3 ± 0.4 as determined by mass spectrometry. The N-terminal partial amino acid 

sequence identified 13 of the total 37 amino acid residues as follows: NH2-Lys-Tyr-Tyr-Gly-

Asn-Gly-Val-His-Cys-Thr-Lys-Ser-Gly-. 

Felix et al. (1994) characterized leucocin B-Tal la, a bacteriocin fi-om Leuconostoc 

camosum Tal la isolated firom meat. Nucleotide sequence analysis of the 8.1 kb recomb'mant 
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Table 3. Purification, characterization, and comparison of bacteriocins firom leuconostocs 

Bacteriocin Producer Medium* Purification Molecular mass Amino acid Amino acid Reference 
scheme* analysis sequence 

Camosin L. camosum LA 
44A 

MRS UF, ASP 2,510-6,000 Da 
(by SDS-PAGE) 

ND" ND Laack et 
al. (1992) 

Camocin L. camosum LA MRS HIC 4kDa(bySDS- ND ND Keppler et 
LA54A 54A PAGE) al. (1994) 
Leucocin L. gelidum UAL CAA ASP, fflC, 3,930.3±0.4 Da Yes Yes (37 Hastings 
A-UAL 187 187 GFC, 

reversed-
phase HPLC 

(by MS) residues) etal. 
(1991) 

Leucocin L. camosum MRS NP' ND ND Yes Felix e/a/. 
B-Talla Talla (1994) 
Mesenterocin L. mesenteroides MRS ASP, GFC, 6-7 kDa (by ND ND Sudirman 
52 FR52 CEC, HIC GFC) etal. 

(1994) 
Mesentericin L. mesenteroides MRS ASP, UF, 3,666.6 Da (by ND Yes (36 Hechard 
Y105 ssp. mesentero 

Y105 
reversed-
phase HPLC 

sequence) residues; 
PIR) 

etal. 
(1992) 

'Abbreviations: MRS is commercially available medium; CAA is the defined medium containing casamino acids, yeast extract, 
glucose, dipotassium phosphate, Tween 80, diammonium citrate, magnesium sulfate, and manganous sulfate; ASP, ammonium 
sulfate precipitation; GFC, gel filtration chromatography; CEC, cationic exchange chromatography; HIC, hydrophobic 
interaction chromatography; UF, ultrafiltration; HPLC, high performance liquid chromatography; MS, mass spectrometry 
""ND, Not determined 
°NP, Not purified 
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plasmid (pJF8.1), which contains the genetic determinant of the leucocin B-Tal la, was 

accomplished. Recently, pediocin PA (Marugg et al., 1992), sakacin A (Hoick et al., 1992), 

sakacin P (Tichaczek et al., 1992), leucocin A-UAL 187 (Hastings et al., 1991) and curvacin 

A (Tichaczek et al., 1992) have been shown to have a consensus sequence of -Tyr-Gly-Asn-

Gly-Val-Xaa-Cys- in their N-termini. The amino acid sequence of leucocin B-Tal la is 

significantly homologous to the sequence of leucocin A-UAL 187. The 37-amino acid 

structural proteins are identical, but the N-terminal extension of leucocin B-Tal la differs from 

that of leucocin A-UAL 187 by seven residues. 

Characterization and purification of mesentericin YIOS, an anti-listeria bacteriocin from 

Leuconostoc mesenteroides, was accomplished by Hechard et al. (1992). Mesentericin Y105 

was purified to homogeneity by affinity chromatography, ultrafiltration, and reversed-phase 

HPLC on a C4 column. Amino acid sequencing work showed that mesentericin Y105 is a 36-

amino acid polypeptide with a primary strucuture close to that of leucocin A-UAL 187, 

according to the EMBL data bank. Mesentericin Y105, however, appears to be bactericidal 

to Listeria monocytogenes E 20, whereas leucocin A-UAL 187 seems to have a wider range 

of action and a bacteriostatic activity. The molecular mass of mesentericin YIO is 3,666.6 Da, 

based on sequencing data. 

Pediococci. Information on purification and characterization of some of the bacteriocins 

from pediococci is summarized in Table 4. 

Motlagh et al. (1992) studied the nucleotide and amino acid sequences of the pap-gene 

and its product, pediocin AcH, in Pediococcus acidilactici H. Protein transferred to the 
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Table 4. Purification, characterization, and comparison of bacteriocins from pediococci 

Bacteriocin Producer Medium* Purification 
scheme* 

Molecular mass Amino acid 
analysis 

Amino acid 
sequence 

Reference 

Pediocin P. acidilactici DCGB ASP, dialysis. 2,700 Da (by ND" ND Bhunia et 
AcH strain H GFC, AEC SDS-PAGE) al. (1988) 
Pediocin P. acidilactici TGE ASP, dialysis. 2.5-3.4 kDa (by ND Yes (by Motlagh et 
AcH SM freeze-diy SDS-PAGE) using PVDF 

membrane) 
al. (1992) 

Pediocin P. acidilactici MRS ASP, dialysus. 16.5 kDa (by ND ND Gonzalez 
PA-1 PACl.O EEC, dialysis GFC) and Kunka 

(1987) 
Pediocin P. acidilactici MRS ASP, 4,600 Da Yes (43-44 Yes (NS'=) Lozano et 
PA-1 successive 

CEC, RPC 
(predicted) residues) al. (1992) 

Pediocin P. acidilactici TGE CEC 4 kDa (by SDS- ND ND Schved et 
SJ-1 SJ-I PAGE) al. (1993) 

'Abbreviations: MRS is a commercially available medium; TGE, DCGB (dialysed casein broth) are semidefined media; ASP, 
ammonium sulfate precipitation; lEC, ion exchange chromatography; GFC, gel filtration chromatography; AEC, anion exchange 
chromatography; CEC, cation exchange chromatography; RPC, reverse phase chromatography 

Not determined 
Not searched in computer databases 
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PVDF membrane that corresponded to pediocin AcH activity was used to perform limited N-

terminal amino acid sequencing. A partial amino acid sequence (23 residues) was determined; 

NH2-Lys-Tyr-Tyr-Gly-Asn-Gly-Val-Thr-Cys-Gly-Lys-His-Ser-Cys-Ser-Val-Asp-Trp-Gly-

Lys-Ala-Thr-Thr-. The authors suggested that pediocin AcH is most likely translated as 

prepediocin with an 18-amino acid leader sequence that is removed as a step in post-

translational processing. 

A bacteriocin produced by Pediococcus acidilactici was purified to homogeneity by 

ammonium sulfate precipitation, cation exchange, hydrophobic interaction, and reverse-phase 

chromatography (Lozano el al., 1992). The purification resulted in an 80,000-fold increase in 

specific activity and an approximately 6-fold increase in total activity. Determination of the 

amino acid composition of pediocin PA-1 showed that it has 41 residues. On the other hand, 

43 amino acid residues were sequenced from the N-terminus. The primary amino acid 

sequence of this bacteriocin is identical to that of pediocin PA-1 as reported by Henderson et 

al. (1992). 

Camohacteria. Information on purification and characterization of some of the 

Camobacterium bacteriocins is summarized in Table 5. The genus Camobacterium was 

described as the atypically nonaciduric lactobacilli by Collins et al. in 1987. Knowledge of 

bacteriocins produced by this new group of bacteria is limited. 

Piscicolin 61, a bacteriocin from Camobacterium piscicola LV61 was purified to 

homogeneity by ammonium sulfate precipitation and sequential hydrophobic interaction and 

reversed-phase chromatography (Hoick et al., 1994). Overall, greater than 64,000-fold 
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Table 5. Purification, characterization, and comparison of bacteriocins from camobacteria 

Bacteriocin Producer Medium* Purification 
scheme* 

Molecular mass Amino acid 
analysis 

Amino acid 
sequence 

Reference 

Camocin C. piscicola MRS ASP, desalt on ND" ND ND StofFels et 
UI49 UI49 GFC, CEC al. (1992) 
Camocin C. piscicola GM17 XAD ND ND ND StofTels et 
UI49 UI49 chromatography, 

CEC (large scale 
purification) 

al. (1993) 

Piscicolin C piscicola cMRS ASP, mc. 5,052.6 ND Yes Hoick et al. 
61 LV61 reversed phase 

FPLC 
(1994) 

unnamed C. piscicola 
LV17 

APT ASP, dialysis ND ND ND Ahn and 
Stiles 
(1990) 

'Abbreviations: MRS, APT are commecially available media; GM17, cMRS are modified media; ASP, ammonium sulfate 
precipitation; GFC, gel filtration chromatography; CEC, cation exchange chromatography 
Sid, Not determined 
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increase in specific activity (AU/OD280) was obtained by the end of the purification sequence. 

Forty N-terminal amino acid residues of the purified bacteriocin were determined by Edman 

degradation. Piscicolin 61 consisted of one polypeptide chain of S3 amino acid residues with 

a calculated MW fi'om the amino acid sequence of 5,052.6. No sequence similarities of 

piscicolin 61 with other known proteins in the SWISS PROT or PIR sequence databases were 

detected. 

Others. Information on purification and characterization of bacteriocins fi'om other 

microorganisms is sununarized in Table 6. 

Purification and characterization of linecin A, a bacteriocin produced by Brevibacterium 

linens ATCC 9175, was studied by Kato et al. (1991). When mitomycin C was added to the 

culture broth at a final concentration of 0.3 ^g/ml to cause release of intracellular linecin A, 

the extracellular linecin A activity (128 units/ml) increased by almost 15-fold. Kato et al. 

(1991) purified linecin A to homogeneity by DEAE-Cellulofine, Sephacryl S-500, and 

Sephacryl S-300 column chromatography. The molecular weight (95 kDa) of linecin A was 

determined by gel fihration. Amino acid composition of linecin A, but not the amino acid 

sequence, has been determined. 

Salivaricin A was purified fi'om agar cultures of Streptococcus salivarius 20P3 (Ross et 

al., 1993) by XAD-2 ion-exchange chromatography and reversed-phase HPLC. Molecular 

weight of salivaricin A has been determined as 2,315 ± 1.1 Da by mass spectrometry. Purified 

salivaricin A has an N-terminal partial amino acid sequence as follows; NH2-Lys-Arg-Gly-Ser-

Gly-Trp-Ile-Ala-Xaa-Ile-Xaa-Asp-Asp-Xaa-Pro-Asn. A search of protein and DNA data 
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Table 6. Purification, characterization, and comparison of bacteriocins from other microorganisms 

Bacteriocin Producer Medium* Purification 
scheme* 

Molecular mass Amino 
acid 
manlysis 

Amino 
acid 
sequence 

Reference 

Bacteriocin Rhizobium NB Sucrose ND" ND ND Gissman 
16-2 rhizobial strain 

16-2 
gradient 
sedimentation 

andLotz 
(1975) 

Carotovoricin Erwinia MB or ASP, DEC, ND ND ND Itoh et al. 
Er carotovora AMS 

6082 
M9 Sucrose 

density 
gradient 
centrifu^aiton 

(1978) 

Enterocin Enterococcus M17 ASP, dialysis 5,800 Da (by ND ND Villani et 
226NWC faecalis 226 SDS-PAGE) al. (1993) 
Linecin A Brevibacterium 

linens KTCCmS 
Bouillon ASP. 

successive 
ffiC, GFC 

95 kDa (by 
GFC) 

Yes ND Kato et al. 
(1991) 

Salivaricin A Streptococcus 
salivarius 20P3 

MGA 
(0.5% 
glucose) 

XAD-2, 
successive 
lEC, 
reversed-
phase FPLC 

2,315±1.1 Da 
(by SDS-
PAGE) 

Yes (15 
residues) 

Yes (8 
residues) 

Ross et al. 
(1993) 

Staphylo-
coccin 1580 

Staphylococcus 
epidermidis 1580 

TSB XAD-2, CEC, 
reversed-
phase HPLC 

2,000 Da (by 
SDS-PAGE) 

Yes (15 
residues) 

Yes (NS=) Sahl 
(1994) 
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Table 6. Continued. 

Bacteriocin Producer Medium* Purificatin scheme* Molecular 
mass 

Amino acid 
analysis 

Amino acid 
sequence 

Reference 

Syringacin 
W-1 

Pseudomonas 
syringae pv. 
^ingae PsW-1 

NBY UF, Sucrose gradient 
centrifligatoin, 
DEAE-Cellulose 
chromatography 

ND Yes ND Smidt and 
Vidaver 
(1985) 

Thuricin Bacillus 
thuringiensis 
HD-2 

MTS PEG and UF, ultrogel 
AcA34 
chromatography 

950 kDa (by 
GFC) 

ND ND Favret and 
Yousten 
(1989) 

unnamed Bacteroides 
ovatus H47 

BHI-S ASP, GFC, 
Preparative PAGE 

78 kDa (by 
SDS-PAGE) 

ND ND Miranda et 
al. (1993) 

unnamed Pseudomonas 
solanacearum 
B1 

CPG ASP, AEC, MUF, 
preparative 
electrophoresis 

65 kDa (by 
SDS-PAGE) 

ND ND Cuppels et 
al. (1978) 

*Abbre\aations: NB, M9, Ml7, TSB are commercially available media; MGA, NBY, MTS, BHI-S CPG are modified media; 
Bouillon broth is a semidefined medium; UF, ultrafiltration; ASP, ammonium sulfate precipitation; AEC, anion exchange 
chromatography; MUF, membrane ultrafiltration; EEC, ion exchange chromatography; GFC, gel filtration chromatography; 
CEC, cation exchange chromatography; PAGE, polyacrylamide gel electrophoresis 
""ND, Not determined 
°NS, Not searched in computer databases 
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bases by using FASTA, and a comparison of salivaricin A with other previously sequenced 

lantibiotics by RDF2 analysis, showed no significant homology. The recently found N-

terminal sequence (NH2-Lys-Gly-Gly-Ser-Gly-VaI-Ile) of the lanthionine-containing lactacin 

481 differs fi'om the corresponding region of salivaricin A only at positions 2 and 6. 

However, the reported amino acid composition of lactacin 481 is totally different. The lack of 

sequence similarity between salivaricin A and other lantibiotics (nisin, subtilin, gallidermin, and 

epidermin) shows that salivaricin A does not share a common ancestry with these bacteriocins. 

Sahl (1994) reported that staphylococcin 1580 was purified to homogeneity by XAD-2 

column separation, cation exchange chromatography, and reversed-phase HPLC. Analysis by 

SDS-PAGE showed that purified staphylococcin 1580 has an apparent MW of approximately 

2,000. Amino acid composition analysis, determination of molecular mass (2,165 Da) and 

limited N-terminal sequencing (NH2-Ala-Xaa-Lys-Phe-Ile-Xaa-Xaa-Pro-Gly-Xaa-Ala-Lys-

block) demonstrated that staphylococcin 1580 is identical to epidermin, a lantibiotic. 

Propionibacteria. Information on purification and characterization of some of the 

bacteriocins fi'om propionibacteria is summarized in Table 7. 

Purification and characterization of acnecin, a bacteriocin produced by P. acnes CN-8, 

was studied by Fujimura and Nakamura (1978). Acnecin was purified to homogeneity by 

ultrasonic treatment, ammonium sulfate precipitation, ion exchange and gel filtration 

chromatography. Specific activity of acnecin increased 72-fold in comparison with the crude 

extract. Acnecin consisted of five subunits with a MW of about 12,000. From amino acid 
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Table 7. Purification, characterization, and comparison of bacteriocins from propionibacteria 

Bacteriocin Producer Medium* Purificatin scheme* Molecular Amino acid Amino acid Reference 
mass analysis sequence 

Acnecin P. acnes CN-8 unnamed* UT, ASP, lEC, GFC 12,000 Da (by Yes ND" Fujimura 
SDS-PAGE) and 

Nakamura 
(1978) 

Jenseniin G P.jensenii PI 26 NLB Membrantion, ND ND ND Grinstead 
dialysis. and 
concentration by PEG Barefoot 

(1992) 
Propionicin P. thoenii PI27 NLB ASP, dialysis, 10 or 150 kDa ND ND Lyon and 
PLG-1 concentration by PEG (by GFC) Glatz 

(1991) 
NLB ASP, dialysis, lEC, 10,000 Da (by ND ND Lyon and 

Isoelectric focusing SDS-PAGE) Glatz 
(1993) 

RTT 108 P. acnes RTT BHI MD, AEC, 78,000 Da ND ND Paul and 
substance 108 concentration by Booth 

ultrafiltration (1988) 

'Abbreviations; unnamed medium is a medium containing 3.7% brain heart infusion (Difco) supplemented with 0.2% yeast 
extract (Difco); NLB is a semidefined medium; BHI is a commercially available medium; UT, ultrasonic treatment;; ASP, 
ammonium sulfate precipitation; lEC, ion exchange chromatography; GFC, gel filtration chromatography; PEG, polyethylene 
glycol; AEC, anionic exchange chromatography 
'TVD, Not determined 
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composition analysis, aspartic acid, glutamic acid, glycine, and alanine were found to 

predominate. 

Properties of a cell-associated bacteriocin-like substance (RTT 108) produced by P. 

acnes RTT 108 were reported by Paul and Booth (1988). Partially purified bacteriocin could 

be obtained by mechanical disruption, anion exchange chromatography, and concentration in 

an ultrafiltration cell. The molecular weight of RTT 108 was estimated to be 78,000. The 

RTT 108 substance seemed to be different from acnecin CN-8 because it was larger and was 

active against a broader range of organisms. 

Jenseniin G, a heat-stable bacteriocin produced hy P. Jensenii PI26, was studied by 

Grinstead and Barefoot (1992). Jenseniin G was active at pH 7.0; inactivated by treatment 

with pronase E, proteinase K, and type 14 protease; insensitive to catalase; stable to freezing, 

cold storage (4''C, 3 days), and heat (100°C, 15 min); and active against closely related 

propionibacteria, lactococci, and lactobacilli. Complete purification of jenseniin G has not 

been reported. 

Lyon and Glatz (1993) reported that propionicin PLG-1, a bacteriocin produced by 

Propionibacterium thoenii P127, could be purified by ammonium sulfate precipitation, ion-

exchange chromatography and isoelectric focusing, resulting in an approximately S,700-fold 

increase in specific activity with a yield of 7%. Analysis of purified propionicin PLG-1 by 

SDS-PAGE gave a molecular weight of 10,000 Da. 

Mode of Action of Bacteriocins. Studies on the mode of action of bacteriocins started 

with the colicins, antimicrobial proteins produced by E. coli. The general lethal action of the 
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colicins was suggested to occur in three stages: binding to a specific receptor on the cell 

surface; insertion into or transport across the sensitive cell's membrane; and killing of the cell 

(Montville and Kaiser, 1993). Several mechanisms leading to cell death have been 

hypothesized. These include depletion of the proton motive force (PMF) across the cell 

membrane; RNase and/or DNase activity within the sensitive cell; and lysis of sensitive cells at 

the cell membrane (Montville and Kmser, 1993). For a review of this early work, see Lyon 

(1991). The present literature review will mainly focus on recent studies. 

Bruno and Montville (1993) studied the influence of four bacteriocins (pediocin PA-1, 

leuconocin S, lactacin F, and nisin) from lactic acid bacteria on the PMF of sensitive cells. 

They suggested that the bacteriocins of lactic acid bacteria all have the same mechanism, 

namely, depletion of PMF. Pediocin PA-1 (20 |ig/ml), leuconocin S (48.5 ^g/mJ), and nisin (5 

^ig/ml) mediated total or major PMF dissipation of energized Listeria monocytogenes Scott 

A, while lactacin F (13.5 p-g/ml) mediated 87% depletion of the PMF of energized 

Lactobacillus delbrueckii ATCC 4797 cells. Pediocin PA-1, leuconocin S, and lactacin F 

acted in an energy-independent manner, whereas the activity of nisin was energy-dependent. 

By using liposomes and proteoliposomes, Gao etal. (1991) showed that nisin depolarized 

membranes and dissipated the membrane potential (A\{f) and the pH gradient (ApH) in a 

voltage-dependent manner. The basal PMF and the influence of nisin on the PMF were 

studied in L. monocytogenes Scott A by Bruno et al. (1992), who showed that addition of 

nisin (S 5 (ig/ml) completely dissipated the PMF in cells at external pH values of 5.5 and 7.0. 

With 1 p-g/ml of nisin, ApH was completely dissipated, but A\j/ decreased only slightly. The 
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action of nisin on the PMF in L monocytogenes Scott A was both time-dependent and 

concentration-dependent. 

van Belkum et a/. (1991) reported that purified lactococcin A specifically increased 

permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-

mediated manner and dissipated the membrane potential. Lactococcin A also inhibited the 

PMF-driven leucine uptake and leucine counterflow in membrane vesicles of a sensitive strain 

but not in membrane vesicles of a strain immune to the bacteriocin. The specificity of 

lactococcin A may be mediated by a recepter protein associated with the cytoplasmic 

membrane. From the foregoing information, it appears likely that lactococcin A induces the 

formation of pores in the cytoplasmic membrane of L. lactis and these pores allow fi'ee 

diffusion of ions and amino acids. The efflux of essential compounds can explain the growth 

inhibition and ultimate death of lactococcal cells exposed to lactococcin A. 

Venema et al. (1993) demonstrated that purified lactococcin B (Lcn B) experts its 

bactericidal effect on sensitive L lactis cells by dissipating the PMF and thereby causing 

leakage of intracellular substrates. The Lcn B induces formation of pores in the cytoplasmic 

membrane of sensitive cells in the absence of a PMF. At low concentrations of Lcn B, efflux 

of some ions and amino acids that are taken up by PMF-driven systems was found. On the 

other hand, a ISO-fold higher Lcn B concentration was required for efflux of glutamate, 

previously taken up via a unidirectional ATP-driven transport system. In immune L. lactis 

cells, the PMF was not dissipated, and no leakage of intracellular substrates was detected. 



www.manaraa.com

41 

The effect of pediocin JD, a bacteriocin produced hy Pediococcus acidilactici JD 1-23, 

on the PMF and proton permeability of L. monocytogenes Scott A was studied by Christensen 

and Hutkins (1992). The pH gradient of cells exposed to pediocin JD was rapidly dissipated, 

while control cells maintained a pH gradient and a membrane potential of 0.65 pH unit and 75 

mV, respectively. The inhibitory action of pediocin JD against L monocytogenes is directed 

at the cytoplasmic membrane and may be caused by the collapse of one or both of the 

individual components of the PMF. 

Pediocin PA-1, a bacteriocin produced by P. acidilactici PAC 1.0, showed a bactericidal 

effect on sensitive Pediococcus cells, in which it acted on the cytoplasmic membrane 

(Chikindas et al., 1993). Pediocin PA-1 dissipated the transmembrane electrical potential and 

inhibited amino acid transport in sensitive Pediococcus cells. Release of ions and small 

molecules from the target cells led to cell death, with or without lysis. 

Schved et al. (1994) monitored alterations induced by pediocin SJ-1 in the cytoplasmic 

membrane of sensitive Lactobacillus plantarum cells by using a l-anilino-8-

naphthalenesulphonic acid (ANS) fluorescent probe. The addition of pediocin SJ-1 to the 

sensitive strain showed an increase in fluorescence intensity of ANS. Pediocin SJ-1 

neutralized charges located on the hydrophilic portion of membrane phospholipids. 

Furthermore, pediocin SJ-1 was likely to create pores in the cytoplasmic membrane, which 

could explain the leakage of low molecular weight compounds and depolarization of the 

cytoplasmic membrane. 
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Changes in membrane permeability of L monocytogenes and mitochondria caused by 

mesentericin Y105 were reported by Maftah et al. (1993). Mesentericin Y105 dissipated the 

plasma membrane potential ofZ. monocytogenes and inhibited the transport of leucine and 

glutamic acid. Also, this bacteriocin uncoupled mitochondria by increasing state 4 respiration 

and decreasing state 3 respiration, apparently by inducing pore formation in the energy-

transducing membranes. 

Lactacin F is bactericidal against Lactobacillus delbrueckii, L helveticus, and 

Enterococcus faecalis. Inhibitory activity against L. delbrueckii was contributed by two 

peptides, LafA and LafX, which are encoded within the lactacin F operon (Klaenhammer, 

1993). The mode of action of lactacin F against E. faecalis ATCC 19443 was studied by 

Abee et al. (1994). Lactacin F caused an immediate loss of cellular depolarization of the 

cytoplasmic membrane, and hydrolysis of internal ATP. The ATP hydrolysis was due not to 

dissipation of the PMF but most likely to efflux of inorganic phosphate, resulting in a shift of 

the ATP hydrolysis equilibrium. From these results, it appears that possible mechanisms are 

interaction of lactacin F with cytoplasmic membranes and formation of poration complexes. 

Conclusions and perspectives. During the past decade, bacteriocins have become a 

primary focus of research because of their potential use as nontoxic biopreservatives. To 

date, many bacteriocins have been optimized for production, purified to homogeneity, 

characterized and compared with other bacteriocins. Future efforts directed toward molecular 

characterization of the structure, function, and regulation of purified bacteriocin will 

accelerate efforts to engineer innovative antimicrobial peptides with enhanced capabilities and 
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diverse applications (Muriana and Luchansky, 1993). Manipulation of genes for bacteriocin 

production and immunity is expected to provide the opportunity for drastic improvement of 

bacteriocin production, and expansion of the inhibitory spectrum. Finally, applications of 

bacteriocins to food systems will be facilitated by the above information on bacteriocins. 
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IMPROVEMENT OF DETECTION AND PRODUCTION OF PROPIONICIN PLG-1, 

A BACTERIOCDSr PRODUCED BY PROPIONIBACTERIUM THOENII 

A paper prepared for submission to the Journal of Food Protection 

Hyun-Dong Paik, Hsing-Yi Hsieh and Bonita A. Glatz 

ABSTRACT 

Propionibacterium thoenii strain PI27 produces propionicin PLG-1 in liquid culture at 

relatively low concentrations and slow production rates. Previous reports indicated detectable 

activity in culture broth only after about 10 days of incubation. The goal of this study was to 

increase the sensitivity and reproducibility of the standard well diffusion assay system for 

bacteriocin activity as well as to improve production of propionicin PLG-1 under controlled 

conditions in a fermenter. Agar concentration, well diameter, addition of Tween 80 to the 

agar, nature of the indicator organism and composition of the base agar were varied in an 

attempt to improve sensitivity and reproducibility of the well diffusion assay. Best results 

were obtained with 7-mm wells cut into a S-mm deep base layer that contained 2.5% agar, 

0.85% NaCl and 0.1% Tween 80. Plates were incubated at room temperature for 24 h or at 

37°C for 2 h before adding bacteriocin samples to the wells to aid diffusion. Larger and 

clearer zones of inhibition were observed when Lactobacillus delbrueckii ATCC 4797 rather 

than Propionibacterium acidipropionici P5 was used as indicator strain, and results could be 



www.manaraa.com

45 

read in 12 h rather than 48 h. Recovery of bacteriocin from the culture supernatant was 

improved by adding 0.1% Tween 80 to the buffer used for dialysis and resuspension of 

precipitated protein. Strain PI27 was grown in six different media under controlled 

conditions in a fermenter; 12.5% beet molasses; 9% com steep liquor; combinations of beet 

molasses and com steep liquor at 1:3, and 1:1 and 3:1 vol;vol ratios; and the standard growth 

medium, sodium lactate broth. Cell populations reached lO' cells/ml in all media. Maximum 

production of propionicin PLG-1 was obtained in 3:1 beet molasses:com steep liquor, and 

was 5 times greater than in sodium lactate broth. Measurable activity was detected after 4 

days of culture incubation rather than after 10 days. This improvement was probably due both 

to increased bacteriocin production by the culture and to increased sensitivity of the assay 

system. 

INTRODUCTION 

Bacteriocins are proteins produced by a heterogeneous group of bacteria that have a 

bactericidal effect on closely related organisms (Tagg etal, 1976). Recently, bacteriocins 

from lactic acid bacteria and other food-related organisms have been the subjea of much 

research because of their potential as food preservatives (Wang, 1993; Daeschel, 1989; 

Nettles and Barefoot, 1993). Two important considerations in the study of bacteriocins are 

the sensitivity of the detection system for antimicrobial activity and the determination of 

growth conditions that allow maximum production of the bacteriocin. 
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One of the most conunon methods for detecting and quantifying bacteriocin activity is the 

well diffusion assay, first described by Tagg and McGiven (1971), which is generally adapted 

by each researcher according to his/her own specific requirements. Despite its popularity, this 

method has disadvantages. Preparation of materials and set-up of the assay plates can be 

laborious (Toba^/a/., 1991; Ryser and Richard, 1992;Benkerroume/a/., 1993). Results 

obtained are subject to error from several sources, such as the reproducibility of the indicator 

organism concentration and the ability of the investigator to determine the last dilution 

showing inhibition of the indicator (Muriana & Luchansky, 1993). 

Many studies have concentrated on growth medium optimization to increase bacteriocin 

yield in the culture supernatant. In some, the producer organism was grown in different 

commercial media in an attempt to improve bacteriocin production (Muriana & Luchansky, 

1993). In others, medium components and fermentation conditions were modified to achieve 

an increase in bacteriocin titers (Biswas et al, 1991; Parente and Hill, 1992; Muriana and 

Luchansky,1993). 

Propionicin PLG-1, a bacteriocin from Propionihacterium thoenii PI27, has been 

produced by cultures grown on solid medium (Lyon and Glatz, 1991) and also in liquid 

medium (Lyon and Glatz, 1993). However, bacteriocin activity detected in the supernatant 

was rather low, and did not reach a maximum until 14 days of incubation. It will be necessary 

to increase the productivity of propionicin PLG-1 in liquid culture if it is to be produced in 

quantities needed for food use. The goals of this study were to increase the sensitivity of the 
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well difiusion assay for propionicin PLG-1, to standarize conditions used in the assay to 

reduce error, and to seek the best growth medium to improve production of propionicin PLG-

1 by strain PI27. 

MATERIALS AND METHODS 

Bacterial strains. Producer six?mPropionibacterium thoenii PI27 and indicator strain 

Propionibacterium acidipropionici P5 were maintained as previously described by Lyon and 

Glatz (1991). Indicator strain Lactobacillus delbrueckii ATCC 4797 (provided by Dr. Susan 

Barefoot, Clemson University) was propagated in Lactobacilli MRS broth (Difco, Detroit, 

MI) statically at 3TC and stored at -eCC in MRS broth with 20% glycerol. 

Fermentation media. The standard laboratory medium, sodium lactate broth (NLB), 

was prepared as described previously (Lyon and and Glatz, 1991). Beet molasses was 

obtained from Heartland Lysine, Inc. (Eddyville, lA) and was stored at 4°C. The molasses 

was diluted with distilled water to 12.5% (w/v) and supplemented with O.S% yeast extract 

(Difco) to obtain the culture medium (designated BM). Com steep liquor in liquid form was 

obtained from Com Products (Argo, IL), and stored at 4°C. Culture medium (designated 

CSL) was obtained by diluting the com steep liquor with distilled water to a final 

concentration of 9% (v/v) and supplementing with 0.5% yeast extract. Three more media 
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were obtained by combining BM and CSL at vol:vol ratios of 1:1,1:3 and 3:1. All media 

were sterilized at 121''C for 40 min. 

Fermentations. Fermentations were performed in 1-L bottles or in a 1.5-L working 

volume fermenter (Biostat M; B. Braun Biotech, Ailentown, PA). Fermentations were started 

with a 1% (vol/vol) inoculum of an 18-h culture of P. ihoenii PI 27 grown in the same 

medium as in the fermenter, and were incubated for 14 or 16 days at 32°C. Agitation was at 

ISO rpm without aeration. The pH during fermentation was automatically controlled at 7.0 ± 

0.1 by the addition of 3N HCl or 3N NaOH. 

Recovery of propionicin PLG-1. Partially purified propionicin PLG-1 was obtained as 

described by Lyon and Glatz (1993) with several modifications. Ammonium sulfate was 

slowly added to the culture supernatant with constant stirring at 4°C to 75% saturation over a 

period of approximately 3 h. This suspension was then slowly stirred for at least an additional 

3 h at 4®C. Precipitated proteins were collected by centrifiigation (24,000 x^) for 30 min at 

4°C and resuspended in about 2 ml of 20 mM 2-N-Morpholino-ethane-sulfonic acid (MES) 

buffer (Sigma Chemical Co. St Louis, MO), pH 6.5, with 0.1% Tween 80 (Fischer Scientific, 

Fair Lawn, NJ) added. The partially purified proteins were dialysed overnight against 2 L of 

10 mM MES buffer containing 0.1% Tween 80 in Spectra- Por no. 3 dialysis tubing (Spectra 

Medical Industries, Los Angeles, CA; MW cutoff3,500). 
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Bacteriocin activity assay. Propionicin PLG-1 activity was determined by the well 

difilision method as described previously (Lyon and CHatz, 1993) with several modifications 

developed in the current study. The final assay procedure was as follows. Samples (200 |j.l) 

of partially purified bacteriocin were added to 7-mm wells cut into a S-mm deep base agar that 

contained 2.5% agar, 0.85% NaCI and 0.1% Tween 80. Wells were cut 24 h after plates had 

been poured with base agar and incubated at room temperature. An additional incubation at 

room temperature for 24 h or at 37 °C for 2 h was employed after the wells were cut to assure 

that plates were dry and to facilitate sample difiusion into the agar. After the samples had 

difiused into the agar, the agar layer was flipped into the lid of the plate, and a soft layer of 

MRS agar (0.7% agar, 0.1% Tween 80) containing about lO' cells ofZ,. delbrueckii ATCC 

4797 was applied. Plates were incubated anaerobically for 12 h at 37 °C before zones of 

inhibition were measured. Minimum detection zone diameter was 9 mm (1 mm beyond well 

diameter). The number of bacteriocin activity units (AU) per ml of the original culture broth 

was determined fi'om the reciprocal of the highest dilution of the bacteriocin preparation that 

gave a visible zone of inhibition. If the inhibition zone at this dilution was large (> 11 mm 

diameter), additional incremental dilutions were assayed, to define the titer more precisely. 

Changes in volume and concentration factors between original culture and purified protein 

were taken into account in making calculations. All assays were performed in duplicate, and 

results presented are means of duplicate trials. 
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Viable cell determination. Viable propionibacteria were enumerated by standard plate 

counting procedures on duplicate sodium lactate agar plates incubated anaerobically for 5 

days at "iTC. 

Organic acid determinations. Lactic, acetic, and propionic acid concentrations were 

determined by high-performance liquid chromatography (HPLC) as previously described 

(Woskow and Glatz, 1991). 

Effect of metal ions on bacteriocin production and stability. Effect of the addition of 

CaCb, MgCb and Tween 80 to the growth medium on the production and stability of 

propionicin PLG-1 was tested by the agar spot assay (Fleming et al., 1975). A 5-|j.l spot of an 

18-h culture of P127 was inoculated onto plates of NLA that contained 0.2% CaCh, 0.2% 

MgCb and 0.2% Tween 80 in various combinations. Plates were incubated anaerobically at 

32°C for up to 30 days. At regular intervals some plates were overlaid with soft MRS agar 

containing the indicator strain L. delbrueckii, incubated 12 h at 37°C, and inhibition zones 

noted and measured. 

RESULTS AND DISCUSSION 

Standarized conditions for the well diffusion assay. As reported previously (Lyon and 

Glatz, 1993), titers of propionicin PLG-1 in liquid culture are low compared to those reported 

for other bacteriocins (Parente et al., 1994, Biswas et al., 1991). One goal in this study was 

to standarize assay procedures and to increase the sensitivity of the well diffusion assay. 
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One problem was the low difilision rate of propionicin PLG-1 into the base layer. In 

addition, the relatively large volume of bacteriocin added to the wells difilised at variable rates 

depending on the dryness of the plates; this adversely aifected assay reproducibility. Others 

have reported efifects of diffusion rate on assay sensitivity. Linton (1983) reported larger 

inhibition zones when antibiotics were allowed to difiiise for longer periods of time before 

overlaying with the sensitive organism. Similarly, Rogers and Montville (1991) found that 

preincubation of plates for 24 h at 3°C allowed for better difilision of nisin, thus increasing 

assay sensitivity by increasing inhibition zone size and enhancing reproducibility by decreasing 

variability between readings. 

Accordingly, we adopted as standard procedure a 24-h incubation at room temperature 

after base agar was poured and before wells were cut, and an additional incubation for at least 

24 h at room temperature or for 2 h at 37°C after wells were cut, to assure that plates were 

sufiiciently dry. These conditions allowed complete difilision of the 200-p.l bacteriocin 

samples into the agar within 5 h with incubation at 4°C. Longer incubation before overlaying 

with the indicator organism did not change the sizes of measured zones of inhibition. 

To improve further the reproducibility and sensitivity of the assay system, agar 

concentration in the base medium was varied between 1% and 3%, thickness of this base 

medium was varied between 3 and 8 mm and well diameter was varied between 3 and 9 mm. 

These variations did not change significantly the calculated titers of the bacteriocin 

preparations tested. However, improvements in the clarity and reproducibility of inhibition 
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zones were seen. Best results, i.e. the largest, clearest and most distinct zones of inhibition, 

were obtained with 7-mm wells cut into a 5-mm deep layer of NLA containing 2.5% agar. 

Nissen-Meyer et al. (1992) reported that the addition of 0.1% Tween 80 to a microtiter 

plate assay system for detection of lactococcin G resulted in a 2- to 10-fold increase in the 

sensitivity of the assay. When we added 0.1% Tween 80 to the base agar in preliminary 

studies, we also observed increased sensitivity of the assay (Table 1). Bacteriocin titers 

increased 2-fold when samples were assayed in the presence of Tween 80. Possibly this 

surfactant altered the association of propionicin with proteins or other components of the base 

agar, and helped to make it more readily accessible to the cells of the indicator strain. 

The composition of the base agar was modified in an effort to produce a simpler, cheaper 

medium that would be less likely to support the growth of contaminants that might enter the 

plates when wells were cut or bacteriocin samples were added. The simplified base medium 

contained 2.5% agar, 0.85% NaCl and 0.1% Tween 80. Not only did this medium reduce 

contamination problems, but it also increased the sensitivity of the assay. Bacteriocin activdty 

units measured in the pl»n agar system were as much as 4 times higher than when the same 

samples were assayed in NLA (Table 2). Factors such as agar composition and ionic strength 

can affect difidision of molecules through the agar matrix; the composition of this simplified 

base medium seems to favor diffusion of propionicin PLG-1. 

Assessment of Lactobacillus delbrueckii ATCC 4797 as an indicator organism. The 

standard indicator organism for propionicin PLG-1 has been P. acidipropionici P5 (Lyon and 

Glatz, 1991). This organism grows slowly, and zones of inhibition cannot be clearly observed 
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before 48 h of incubation. Others have used L delbrueckii ATCC 4797 as indicator organism 

for lactacin F and curvaticin FS47 (Muriana and Klaenhanuner, 1991, Garver and Muriana, 

1994). This organism grows much more rapidly, and inhibition zones should be visible much 

sooner. When L. delbrueckii ATCC 4797 was tested as an alternate indicator organism, 

larger and clearer zones of inhibition were observed than were seen with strain P5. Because 

of the faster growth rate of the lactobacilli, results could be read in 12 h rather than 48 h. In 

addition, this organism proved to be more sensitive to propionicin than was strain P5. 

Inhibitory activity could be detected in samples diluted at least 4-fold more than when the 

propionibacteria were used (Table 2). 

Eftect of Tween 80 on propionicin PLG-1 recovery. There have been several reports 

concerning the effect of Tween 80 on production and recovery of bacteriocins. Nissen-Meyer 

etal. (1992) stated that it was necessary to add Tween 80 to the culture broth before 

ammonium sulfate precipitation to recover lactococcin G from cation exchange columns in 

later purification steps. Other researchers have reported increased production of bacteriocins 

when Tween 80 was added to the growth medium (Parente & Hill, 1992; Garver & Muriana, 

1994). In contrast, Mortvedt et al (1991) found that growth of the producer strain in MRS 

broth containing Tween 80 interfered with the recovery of lactocin S. 

We tested the addition of Tween 80 at various points m the recovery of propionicin PLG-

1 from culture broth for its effect on total activity recovered. Incubation of the whole 

harvested culture with 0.1% Tween 80 for 1 hr prior to precipitation of propionicin PLG-1 

with anmionium sulfate (75% saturation) did not increase measured activity. However, when 
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0.1% Tween 80 was added to the MES bufifer used for dialysis and resuspension of the 

precipitated protein, a significant increase in measured activity was seen. When 0.1% Tween 

80 was added both to the culture and to the buffer, a smaller increase in measured activity was 

observed. This phenomenon was observed several times. Representative data are shown in 

Table 3. Possibly the surfactant associates with proteins during aggregation and partly 

interferes with precipitation. During dialysis the Tween 80 might help protein aggregates 

dissociate, thus releasing more fi-ee molecules of the bacteriocin that could difiuse more easily 

in the well diffusion assay. 

The positive influence of Tween 80 present in the MES buffer on measured bacteriocin 

activity can explain the apparently anomalous results shown in Table 2. In this study, the 

presence of Tween 80 in the base agar in the well diffusion assay had no effect on measured 

activity, whereas in earlier studies (Table 1) Tween 80 seemed to increase assay sensitivity. In 

the study shown in Table 2, precipitated proteins were resuspended in buffer containing 

Tween 80. Apparently this was sufficient to aid bacteriocin diffusion into the base agar. 

Addition of Tween 80 to the agar was not needed. 

The optimum conditions for propionicin PLG-1 recovery and for the well diffusion assay 

can therefore be given as follows. Proteins precipitated with ammonium sulfate are recovered 

by resuspending the proteins in 20 mM MES buffer contmning 0.1% Tween 80 and dialysing 

them overnight against the same buffer. Bacteriocin activity is measured by adding the 

partially purified samples to 7-mm wells cut into a 5-nim deep base agar containing 2.5% 
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agar, 0.85% NaCl and 0.1% Tween 80, allowed to diffuse and overlaid with about 10^ cells of 

L delbrueckii ATCC4797. 

Modification of growth medium to improve bacteriocin production. In other studies 

in our laboratory, we have observed that industrial byproducts such as com steep liquor can 

support excellent growth and organic acid production by the propionibacteria (Paik and Glatz, 

1994). We therefore compared growth of strain PI 27 and production of propionicin PLG-1 

in NLB, beet molasses medium (BM), com steep liquor (CSL) and combinations of BM and 

CSL at 1:3, 1:1 and 3:1 vol:vol ratios in small (1 L) bottles. The pH of the medium was 

manually adjusted to 7.0 every 2 h. Results for these preliminary fermentations are shown in 

Table 4. Fermentations under more closely controlled conditions in the fermenter were 

performed in NLB, BM and 3:1 BM:CSL. A typical fermentation in 3:1 BM:CSL is 

illustrated in Fig 1. Data from fermentations in all media are summarized in Table 4. 

Highest activity of propionicin PLG-1 was obtained in the 3:1 BM:CSL medium. 

Bacteriocin activity could be detected after only 4 days of incubation, and the titer increased 

through 16 days of incubation (Fig. 1). Low but measurable activity was detected in the NLB 

culture at 6 days, with a large increase in activity seen after 14 days of incubation. Previously, 

we had not been able to detect bacteriocin in NLB-grown cultures before 10 days of 

incubation (Lyon and Glatz, 1993). It is likely that the low level of activity seen at day 6 in 

this fermentation would not have been detected if the more sensitive well diffusion assay 

procedure were not being used. These results agree with previous reports of higher 



www.manaraa.com

56 

bacteriocin production under more controlled conditions in the fermenter (Lyon and Glatz, 

1993). 

Strain PI27 has not been considered to be a strong acid producer, but our results show 

that in media containing beet molasses it can produce quite high concentrations of acids. To 

determine if the increased inhibitory activity measured in beet molasses fermentations might be 

due to organic acids, partially purified bacteriocin preparations were analyzed by HPLC for 

acetic acid and propionic acid. No organic acids were detected in these preparations. Thus, 

the inhibitory activity in these preparations is caused by propionicin PLG-1, and the best 

growth medium for propionicin PLG-1 production identified to date is 3:1 BMiCSL. 

EfTect of metal ions on bacteriocin production and stability. Some investigators have 

reported that divalent cations can affect bacteriocin production. Parente and Hill (1992) 

reported optimum biomass and bacteriocin production by Enterococcus faecium DPC 1146 

(enterocin 1146) and by Lactococcus lactis subsp. lactis biovar diacetylactis DPC 3286 

(lactocin D) when Tween 80 and Mn^^were added to the growth medium. In addition, the 

presence of Mg^^ in the medium stabilized bacteriocin activity. 

To test if common divalent ions afifected propionicin production or stability, strain PI27 

was spot-inoculated onto plates of NLA that contained 0.2% CaCb, 0.2% MgCband 0.2% 

Tween 80 added singly and in all possible combinations. The indicator strain (L. delbrueckii 

ATCC 4797) was overlayed at regular intervals up to 30 days of incubation. Small inhibition 

zones were detected after 2 days of incubation. Zone size increased until 8 days and then was 

stable through 30 days. Only Tween 80 seemed to have an effect on zone size, and this effect 
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was seen only early in the incubation period. Up to 8 days of incubation, zones of inhibition 

were largest on plates that contained Tween 80. After 8 days of incubation, zones on all 

plates were at a maximum size and no differences in zone size were seen. The presence of 

CaCb or MgCl2 had no effect on the earliest time inhibition was seen, the size of the inhibition 

zone, or the persistence of inhibitory activity with extended incubation (data not shown). 

Thus, these salts seemed to have no effect on propionicin production. 

The improvements in propionicin PLG-1 production, recovery and detection reported in 

this study will facilitate future research to evaluate the potential of propionicin PLG-1 as a 

food biopreservative. An important area for improvement is the production of high titers of 

bacteriocin activity in the culture. Despite gains made in the current study, titers for 

propionicin PLG-1 are still significantly lower than those reported for other bacteriocins, e.g. 

lactococcin 140 at 15,400 AU/ml (Parente et al, 1994) and pediocin AcH at 36,000 AU/ml 

(Biswas etal, 1991). Research on methods to improve propionicin production is in progress. 
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Table 1. Effect of addition of Tween 80 to the base medium on the sensitivity of the well 

diffusion assay 

Sample Tween 80 

Bacteriocin activity 

(AU/miy 

1 - 20 

1 0.1% 40 

2 - 80 

2 0.1% 160 

3 - 80 

3 0.1% 160 

* Activity reported as activity units per ml of partially purified bacteriocin preparation. 
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Table 2. Effect of indicator organism, addition of Tween 80 and base agar composition on 

the sensitivity of the well difiusion assay 

Indicator organism Tween 80 Base agar Bacteriocin activity 

(AU/ml)* 

P. acidipropionici P5 - NLA 20 

P. acidipropionici F5 0.1% NLA 20 

P. acidipropionici P5 - Plain*" 40 

P. acidipropionici fS 0.1% Plain 40 

Ldelbrueckii faCCA191 - NLA 80 

LdelbrueckiikTCCmi 0.1% NLA 80 

L. delbrueckii kTCC A191 - Plain 320 

LdelbrueckiiKTCCmi 0.1% Plain 320 

* Activity reported as activity units per ml of partially purified bacteriocin preparation. 

** Simplified base medium containing 2.5% agar, 0.85% NaCl and 0.1% Tween 80. 
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Table 3. Effect of Tween 80 addition on propionicin PLG-1 recovery 

Bacteriocin activity 

Tween 80 in culture * Tween 80 in MES buflfer'' (AU/ml)° 

2.8 

O.P/o 6.4 

0.1% - 2.4 

0.1% 0.1% 3.5 

* Tween 80 added to the culture 1 hr prior to ammonium sulfate precipitation. 

** Tween 80 added to the dialysis buffer and to the buffer used to dilute the bacteriocin 

samples. 

Activity units reported as units per ml of original culture. 
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Table 4. Production of acetic acid, propionic acid and propionicin PLG-1 during fermentation 
of Propionibacterium thoeniifMl in different media 

Vessel and 
Medium 

Acetic acid 
m 

Propionic acid 
(g/1)* 

Viable cell 
counts 

(cells/ml)' 

Bacteriocin 
acti>aty 

(AU/ml)'' 

Bottle 

NLB" ND*" ND 2.5 X 10' 0.3 

BM" ND ND 9.0 X 10' 0.3 

CSL' ND ND 9.4 X 10* e 

1:3BM:CSL ND ND 1.5 X 10'° 0.3 

1:1BM:CSL ND ND 1.6x10'° 0.3 

3:1 BM:CSL ND ND 6.2 X 10" 2.2 

Fermenter 

NLB 3.35 2.31 5.6 X 10* 0.6 

BM 11.98 28.13 1.5 X 10* 0.6 

3:1 BM:CSL 11.13 23.10 1.5 X 10' 2.7 
* Maximum concentrations obtained. 
** Reported as activity units per ml of original culture broth at 14 days of incubation. 

NLB: sodium lactate broth. BM; beet molasses medium. CSL; com steep liquor medium. 
Not determined. 
' Bacteriocin activity not detected because of the high concentration of contaminant proteins 
present in the medium that interfered with ammonium sulfate precipitation and resuspension of 
precipitated proteins. 
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Figure 1. Culture growth and production of organic acids and propionicin PLG-1 in 3:1 beet 

molasses; com steep liquor. • Log cfli/ml, • acetic acid, • propionic acid, 

O bacteriocin activity. 
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PURIFICATION AND PARTIAL AMINO ACID SEQUENCE OF PROPIONICIN PLG-1, 

A BACTERIOCIN PRODUCED BYPROPIONIBACTERIUM THOENIIVMl 

A paper prepared for submission to Le Lait 

Hyun-Dong Paik and Bonita A. Glatz 

ABSTRACT 

Propionicin PLG-1, a bacteriocin produced by Propionibacterium thoenii P127, was 

purified to homogeneity by ammonium sulfate precipitation followed by ion exchange column 

chromatography and reversed-phase high-performance liquid chromatography. The amino 

acid composition indicated that propionicin PLG-1 had a calculated molecular weight of 

9,327.7 and contained 99 amino acid residues, of which 42% were hydrophobic (Ala, He, Leu, 

Val, and Pro). A ten-amino acid sequence from the N-terminal end was identified: NH2-'Asn-

^Val-'Asp-*Ala(Thr)-^Arg-®Thr(Cys)-'Ala(Thr)-*Arg-'Thr(Ala)-"'Pro. No homology of this 

sequence to sequences of other bacteriocins from lactic acid bacteria was seen in a search of 

the SWISS-PROT data bank. 
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INTRODUCTION 

Bacteriocins are defined as bactericidal proteins with a narrow spectrum of activity 

targeted toward species related to the producer culture (Tagg et ai, 1976). Because 

bacteriocins are natural products of many microorganisms associated with foods, there is 

currently much interest in their use as natural food preservatives. 

Numerous bacteriocins fi'om gram-positive bacteria, particularly fi'om lactic acid bacteria, 

have been identified (Klaenhammer, T. R., 1988), but only a few bacteriocins have been found 

in propionibacteria. Among the dairy propionibacteria, two bacteriocins have been reported: 

propionicin PLG-1 fi'om P. thoenii P127 (Lyon and Glatz, 1991; Lyon and Glatz, 1993) and 

jenseniinG fi'om P. PI26 (Grinstead and Barefoot, 1992). Propionicin PLG-1 is 

active against a variety of microorganisms (Lyon and Glatz, 1991) and has been shown to 

have a molecular weight of 10,000 after purification by ion exchange chromatography and 

isoelectric focusing (Lyon and Glatz, 1993). 

Recently many bacteriocins have been purified to homogeneity, and the amino acid 

sequences of many of these purified bacteriocins have been determined. Because bacteriocins 

are usually extracellular products, the first purification step concentrates the bacteriocin fi'om 

the culture supematants, usually by ammonium sulfate precipitation. Several chromatographic 

methods, such as gel filtration, ion exchange, and/or hydrophobic interaction chromatography, 

have been recommended to achieve significant further purification. Reversed-phase 

chromatography was used as the final purification step for several bacteriocins, including 
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pediocin PA-1 (Lozano et al., 1992), curvacin A (Tichaczek et al., 1992), sakacin A (Hoick et 

al., 1992), plantaricin A (Nissen-Meyer etal., 1993), bavaricin A (Larsen et al., 1993), and 

piscicolin61 (Hoick e/a/., 1994). 

Separation on reversed-phase supports in high-performance liquid chromatography 

(HPLC) has also been used to obtain highly purified preparations of leucocin A-UAL 187 

(Hastings etal, 1991), lactacinF (Muriana and Klaenhammer, 1991), mesentericin YIOS 

(Hechard etal., 1992), lacticin 481 (Piard et al., 1992), salivaricin A (Ross et al., 1993), 

curvaticin FS47 (Garver and Muriana, 1994), and staphylococcin 1580 (Sahl, 1994). The 

hydrophobic nature of these bacteriocins allows their purification by reversed-phase HPLC. 

The goal of this study was the determination of amino acid composition and partial 

sequence of propionicin PLG-1. For such a study, highly purified bacteriocin was needed. 

This paper reports an improved procedure for purification of propionicin PLG-1, as well as its 

amino acid composition and N-terminal amino acid sequence. 

MATERIALS AND METHODS 

Bacterial cultures and media. Producer strain Propionibacterium thoenii PI27 was 

maintained as described previously by Lyon and Glatz (1991). Working cultures were 

propagated in sodium lactate broth (NLB) without shaking at 32''C. Lactobacillus 

delbrueckii ATCC 4797 was obteuned fi-om Dr. Susan Barefoot (Clemson University, 

Clemson, SC). Stock cultures were maintained at -60''C in Lactobacilli MRS broth (Difco, 



www.manaraa.com

68 

Detroit, MI) containing 20% glycerol. Working cultures were prepared from stock cultures 

and grown in Lactobacilli MRS broth without shaking at 37°C. 

Production of propionicin PLG-1. Strain P127 was grown in 14 L of NLB under 

controlled conditions in a 19-L fermenter (model NLF22, Bioengineering AG, Wald, 

Switzerland) in the Iowa State University Fermentation Facility. The fermentation was started 

with a 1% (vol/vol) inoculum of an 18-h culture in NLB, and was incubated for 14 days at 

22°C. Agitation was at 100 rpm without aeration. The pH was controlled at 7.0 ± 0.1 by the 

addition of 3M HCl or 3M NaOH. 

Ammonium sulfate precipitation. The procedure reported by Lyon and Glatz (1993) 

was modified as follows. Ammonium sulfate was added to culture supematants (approx. 

1,150 ml) to 75% saturation at 4°C very slowly, with constant stirring, over about 10 h. Slow 

stirring was continued for an additional 3 h. Precipitated proteins were pelleted by 

centrifugation at 24,000 x g for 30 min at 4°C, resuspended in 20 mM 2-N-morpholino-

ethane-sulfonic acid (MES; Sigma Chemical Co., St Louis, MO) buffer, pH 6.5, + 0.1% 

Tween 80, and dialyzed against 3 L of 10 mM MES buffer, pH 6.5, + 0.1% Tween 80, for 12-

18 h in Spectra-Por no. 3 dialysis tubing (molecular weight cutoff, 3,500; Spectrum Medical 

Industries, Los Angeles, CA). 

Dialysis against polyethylene glycol. When reduction of sample volume was required, 

the sample in dialysis tubing was placed in a weighboat containing about 50 g of polyethylene 

glycol (PEG; mw 15,000-20,000; Sigma Chemical Co., St. Louis, MO) and incubated for 1-3 

h at 4''C. 
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Ion exchange chromatography. The procedure reported by Lyon and Glatz (1993) was 

modified as follows. The column dimensions were 1.6 x 23 cm and the bed volume of the 

carboxymethyl Sepharose (Sigma) was 39 ml. The column was equilibrated with 20 mM 

MES bufifer (pH 6.5) + 0.1% Tween 80 and concentrated partially purified bacteriocin was 

applied in a descending mode at 4°C. The column was washed with several volumes of the 

same loading bufifer to separate unadsorbed proteins and then adsorbed proteins were eluted 

fi-om the column by means of a linear salt gradient (0 to 1.0 M NaCl, 500 ml) in MES buffer 

(pH 6.5) + 0.1% Tween 80. Fractions (4.2 ml) were monitored for protein content by 

absorbance at 280 nm and assayed for bacteriocin activity. 

Reversed-phase high-performance liquid chromatography. Samples (20 fil) were 

applied to a 30-cm ^Bondapak Cjg column (Supelcosil LC-18; Supelco, Inc., Bellefonte, PA), 

which was equilibrated with 0.1% (v/v) trifluoroacetic acid (TFA; Sigma), in a Shimadzu 

HPLC (model LC-600, Shimadzu Corporation, Kyoto, Japan). Elution was with a 90-min 

linear gradient from 100% bufifer A to 100% bufifer B, then 20 min at 100% buffer B. Bufifer 

A was 0.1% (vol/vol) TFA in water; bufifer B was 0.1% TFA in 100% 2-propanol (Fisher 

Scientific, Fair Lawn, NJ). The flow rate was maintained at 0.4 ml/min and the eluate was 

monitored at 220 nm by means of a Shimadzu UV-Vis Spectrophotometer (model SPD-6AV, 

Shimadzu Corporation). Fractions of 2-ml volume were collected and assayed for bacteriocin 

activity. 

SDS-PAGE. Aliquots (3-5 ^1) of fi-actions obtained fi-om HPLC were subjected to SDS-

PAGE. Approximately 50 to 75 ng protein were loaded into each lane. Electrophoresis was 
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performed using 10-20% gradient polyacrylamide gels (Mini-PROTEAN II Ready Gels; Bio-

Rad Laboratories, Hercules, CA), with the buffer system described by Laemmli (1970) at 

constant voltage (100 V) for 100 min. Gels were fixed in 30% ethanol-10% glacial acetic acid 

solution for 1 h and silver stained according to the manufacturer's instructions (Bio-Rad). 

Protein determination. Protein content of samples at the different purification steps 

was determined by the bicinchoninic acid (BCA) assay (Stoscheck, 1990) according to the 

manufacturer's specifications (Pierce Chemical Co., Rockford, XL). Bovine serum albumin 

(BSA; Sigma) was used as protein standard. Enhanced protocol, which involved color 

development at 60°C for 30 min, was used. 

Amino acid composition and sequence analysis. Amino acid composition and 

sequence analysis of purified propionicin PLG-1 were performed in the Iowa State University 

Protein Facility. Amino acid analysis was performed with an amino acid analyzer model 420A 

(Perkin-Elmer, Applied Biosystems Div., Foster City, CA) equipped with an integrated 

hydrolysis system. The amino acid sequence was determined by Edman degradation (Edman 

and Begg, 1967) using an Applied Biosystems 477A protein sequencer (Perkin-Elmer, 

Applied Biosystems Div.) with an on-line 120A phenylthiohydantoin amino acid analyzer. 

The sequence was compared to those in the SWISS-PROT data base, by using the 

Sequence Analysis Software Package, licensed from the Genetics Computer Group 

(University of Wisconsin, Madison, WI) (Devereux et al, 1984). 

Bacteriocin assay. The well diffusion assay as described by Lyon and Glatz (1993) was 

modified as follows. The basal layer of NLA contained 2.5% agar and 0.1% Tween 80 and 
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was S mm deep. After pouring the agar layer, plates were incubated 24 h at room 

temperature before wells were cut. After 7-mm diameter wells were cut, plates were 

incubated at 37''C for 2 h or at room temperature for 2 days to dry the plates and to facilitate 

sample diftusion into the agar. Indicator strain was L. delbrueckii ATCC 4797, which was 

added to S-ml soft agar (0.7% agar) overlays of MRS medium at about 10^ cells per overlay. 

Serially diluted samples (200 |il) were added to wells, allowed to difiuse at 4°C, and the base 

agar was flipped into the petri dish lid before the overlay was applied. Plates were incubated 

anaerobically in the BBL GasPak system (Becton Dickinson, Cockeysville, MD) for 12 h at 

37°C before diameters of zones of inhibition were measured. Minimum detectable zone 

diameter was 9 mm (1 mm beyond well diameter). Activity units (AU) per ml of original 

culture were calculated from the reciprocal of the highest dilution that produced a detectable 

zone of inhibition. If the inhibition zone at this dilution was large (>11 mm diameter), 

additional incremental dilutions were assay, to define the titer more precisely. 

RESULTS AND DISCUSSION 

Purification of bacteriocin. Propionicin PLG-1 was previously purified to 

homogeneity by ammonium sulfate precipitation, ion exchange chromatography and 

isoelectric focusing (Lyon and Glatz, 1993). Because highly purified preparations were 

required for amino acid composition and sequence analysis, the previously reported 

purification scheme was followed but was modified as required. Some changes in ammonium 
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sulfate precipitation conditions and ion exchange chromatography were made. Reversed-

phase HPLC replaced isoelectric focusing as the final step. These changes are discussed more 

in the next section. 

The purification steps and their associated recoveries of propionicin PLG-1 are given in 

Table 1. Propionicin PLG-1 was purified fi'om the supernatant fi'action of cultures grown in 

semidefined medium, sodium lactate broth, to minimize the presence of contaminating 

proteins. In preliminary studies, some bacteriocin activity was detected in the proteins 

precipitated at 50% saturation of ammonium sulfate. Therefore, to avoid loss of bacteriocin, a 

single precipitation at 75% saturation of ammonium sulfate was used. 

The addition of so much ammonium sulfate to such large volumes of culture supemate 

(generally 1 liter or more was used) took over 10 h; the samples were further stirred slowly at 

4''C for an additional 3 h. This much longer incubation with ammonium sulfate compared to 

that used previously with smaller (50-100 ml) supemates (usually 3 h to add salt plus an 

additional 30 min of stirring after salt addition) seemed to improve bacteriocin recovery. For 

example, in one batch the measured activity in a 50-ml sample was 2.4-fold lower than that 

measured in a 1-L sample. Possibly the longer incubation facilitates interaction of bacteriocin 

molecules with each other or with other proteins that can then precipitate. Other bacteriocins 

have been reported to precipitate poorly. For example, lactacin F (Muriana and 

Klaenhammer, 1991) and lactocin S (Mortvedt et al, 1991) have been reported to be lost as a 

floating fi-action during ammonium sulfate precipitation, possibly due to their hydrophobic 
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character. Slow addition of ammonium sulfate plus continued stirring for at least 3 h are 

recommended for bacteriocin recovery. 

Upon consideration of the amount of protein to be applied to the ion exchange 

Carboxymethyl Sepharose column and the bed volume that could accomodate this amount, a 

smaller column (1.6 x 23 cm, 39 ml bed volume) was used than in previous work (Lyon and 

Glatz, 1993). After application of the bacteriocin preparation the column was washed with 

MES buffer. A large protein peak was eluted within the first 63 ml (IS fi'actions) of buffer 

(Fig. 1). This peak of unadsorbed proteins was completely separated from a protein peak 

eluted at about 0.04 to 0.16 M NaCl. A small portion at the tail of this peak contained 60% 

of the bacteriocin activity originally applied to the column. The S fi'actions containing 

bacteriocin activity (21 ml total volume) were pooled, reduced to 0.4 ml volume by dialysis 

against PEG to concentrate the bacteriocin, and 20 ^1 of this concentrate were applied to an 

analytical Cig reversed-phase HPLC column. A preparative-scale column would be preferred 

when large quantities of purified protein are desired, but the column used in this study was 

sufficient to produce enough protein for subsequent composition and sequence analyses. 

Reversed-phase HPLC can be used as a preparative technique for proteins that are stable 

in organic mobile phases, or for proteins that can renature after unfolding occurs during the 

elution process (Chicz and Regnier, 1990). The sample is usually applied with a weak mobile 

phase that consists of an aqueous acidic solution, while the eluting mobile phase is a gradient 

of an organic solvent such as methanol, 2-propanol, or acetonitrile. Each protein is retained 
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on the column until the proper concentration of organic solvent is reached that displaces the 

protein firom the support (Chicz and Regnier, 1990). 

To select the appropriate acid and organic solvent for purification of propionicin PLG-1, 

the effects of 50% (v/v) methanol, 50% (v/v) 2-propanol, 50% (v/v) acetonitrile, 50% (v/v) 

ethanol, 0.1% (v/v) trifluoroacetic acid (IFA) and 1% (v/v) phosphoric acid on bacteriocin 

activity was first studied. Incubation of partially purified bacteriocin with these solvents and 

acids for 2 h didn't affect measured activity in the well difiiision assay. In addition, these 

solvents and acids showed no inhibitory activity in the assay. The TFA was selected for use 

because it is an excellent solubilizing agent and allows detection of peptide bonds below 230 

nm (Chicz and Regnier, 1990). During the elution process, protein solubility can become a 

problem. Therefore, 2-propanol was selected because it generally shows excellent solubility 

(Chicz and Regnier, 1990). 

The elution of the propionicin preparation from the Cig column was performed twice and 

monitored at Am Two independent trials were performed, and gave similar results. One trial 

is shown in Fig. 2. Several small, sharp peaks were seen, but bacteriocin activity was detected 

only in 10 fractions, with highest activity seen in 4 fi-actions containing a single peak that 

eluted with 84% 2-propanol. A total of 56 fractions were obtained from the column. When 

the purity of the fractions contaning bacteriocin activity was assessed by SDS-PAGE, a single 

protein band with apparent molecular weight 9,690 was detected in 4 fractions with high 

bacteriocin activity. Other fractions contained this band plus possibly one or more additional 
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faint bands (Fig. 3). We concluded that the 9,690 MW protein purified at this step is 

propionicin PLG-1. 

Recently, reversed-phase HPLC has been used to obtain highly purified preparations of a 

number of other bacteriocins, including leucocin A-UAL 187 (Hastings et al., 1991), lactacin 

F (Muriana and Klaenhanuner, 1991), mesentericin Y105 (Hechard et al, 1992), lacticin 481 

(Piard et al., 1992), salivaricin A (Ross et al., 1993), curvaticin FS47 (Carver and Muriana, 

1994), and staphylococcin 1580 (Sahl, 1994). The hydrophobic nature of these bacteriocins, 

and the apparent hydrophobicity of propionicin PLG-1, allows their purification by reversed-

phase HPLC. Hydrophobicity may also contribute to the tendency of many bacteriocins from 

lactic acid bacteria to associate with other substances to form large macromolecular 

complexes. For instance, lactacin B (Barefoot and Klaenhammer, 1984), helveticin J (Joerger 

and Klaenhammer, 1986) and lactacin F (Muriana and Klaenhammer, 1991) have been shown 

to form associations with lipid and carbohydrate. Bacteriocins from Lactobacillus sp. have 

been reported to associate with protein-detergent (Tween 80 in MRS broth) micelles (Garver 

and Muriana, 1994). Association of propionicin PLG-1 with other proteins or aggregation of 

several molecules of propionicin into multimeric forms is the likely reason why it is seen to 

elute in gel filtration at apparent molecular weights of more than 150,000 and approximately 

10,000, while under dissociating conditions it elutes at 10,000 (Lyon and Glatz, 1993). As 

has been demonstrated most completely for the bacteriocins nisin and subtilin (Montville and 

Kaiser, 1993), the hydrophobicity of these molecules promotes interaction with cell 

membranes, leading to bactericidal action through the formation of pores in the membranes. 
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Changes in purification and analytical methods from previous study. A highly 

purified bacteriocin was obtained in this study through a sequence of steps including 

ammonium sulfate precipitation, ion exchange chromatography, and reversed-phase HPLC. 

Changes (or improvements) in purification and analytical methods between this study and the 

previously reported purification scheme are summarized in Table 2. With the use of L 

delbrueckii ATCC 4797 rather than P. acidipropionici P5 as indicator strain, bacteriocin 

activity could be read in 12 h rather than 48 h. This significantly shortened the time required 

to detect the presence of bacteriocin after each purification step, and allowed the purification 

to proceed as quickly as possible. 

In the current study, a single-step ammonium sulfate precipitation at 75% saturation was 

used, rather than taking the proteins precipitated between SO and 75% saturation, because we 

observed that some bacteriocin activity was lost in the proteins precipitated at 50% saturation. 

However, this change affected the amount of protein present in the precipitate and the fold 

purification of bacteriocin obtained. In the current study, an estimated 321-fold purification 

was obtained after ammonium sulfate precipitation. This compares to a 600-fold purification 

in this step reported previously (Lyon and Glatz, 1993). For ion exchange chromatography, a 

small column (1.6 x 23 cm) with a correspondingly small bed volume (39 ml) was used. The 

MES buffer contuned 0.1% Tween 80, and several bed volumes of buffer were run through 

the column to obtain complete separation of unadsorbed proteins firom absorbed proteins 

eluted by the salt gradient. This separation was better than that reported in the previous 

study. 
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The final purification step was changed in the current study. Despite several attempts 

with different combinations of ampholytes, we were not able to obtain a single protein band 

after isoelectric focusing as described previously. Therefore, the alternative method, reversed-

phase HPLC, was tried and was successful in yielding purified bacteriocin. 

Analytical methods used in the current study were more sensitive than those used 

previously. Protein bands in SDS-PAGE were visualized by silver staining, which is 10-100 

times more sensitive than Coomassie blue staining. The 10-20% gradient gels used for SDS-

PAGE also gave better band resolution and less diffusion of lower molecular weight proteins 

than did 18% gels used previously. Very small amounts of protein could be measured by the 

BCA method, which is 10 times more sensitive than the Lowry method. 

Amino acid composition and sequence. The amino acid composition of purified 

propionicin PLG-1 is given in Table 3. Propionicin PLG-1 contained 99 amino acid residues 

with a calculated molecular weight of 9,328. This agrees closely with the molecular weight of 

9,690, determined by the position of propionicin PLG-1 compared to molecular weight 

markers in 10-20% gradient gels in SDS-PAGE (Fig. 3). Neutral (Gly) and hydrophobic (Ala, 

He, Leu, Val, and Pro) residues make up a significant portion of propionicin PLG-1, 20% and 

42%, respectively. It should be noted that tryptophan can be destroyed by the acid hydrolysis 

method employed. If propionicin PLG-1 contdned some tryptophan residues, they could go 

undetected. 

Many bacteriocins of lactic acid bacteria have been shown to have high hydrophobicity 

(Garver and Muriana, 1994). For example, about 50% of the amino acids are hydrophobic in 
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lactococcin A (Holo et al., 1991), lactocin S (Mortvedt et al, 1991) and curvaticin FS47 

(Garver and Muriana, 1994). Curvacin P and sakacin P (Tichaczek et al, 1992) contain only 

about 20-25% hydrophobic residues. The high proportion of glycine residues in propionicin 

should provide a significant amount of flexibility to the molecule (Garver and Muriana, 1994). 

Glycine occupies very little space and allows a wide range of conformations in the folding of 

polypeptide chains (Stryer, 1988). 

The sequence of the first 10 N-terminal amino acids was determined as follows: NH2-

'Asn-Val-'Asp-*Ala(Thr)-'Arg-®Thr(Cys)-'Ala(Thr)-*Arg-'Thr(Ala)-'°Pro-. When an amino 

acid is listed in parentheses after another, this indicates that either may be present, with the 

first being more likely. This amino acid sequence was compared to others listed in the 

SWISS-PROT data bank. No homology was found when it was compared to other 

bacteriocins fi'om lactic acid bacteria. Therefore, propionicin PLG-1 seems to be different 

fi-om other previously reported bacteriocins from lactic acid bacteria. 

In contrast to this result, many bacteriocins of lactic acid bacteria have been reported to 

share significant degrees of homology. For example, bavaricin A (Larsen et al., 1993) was 

found to share 66% homology with pediocin PA-1 produced by Pediococcus acidilactici 

(Marugg et al., 1992) and 39% homology with leucocin A-UAL (Hastings et al., 1991). 

Sakacin A (Hoick et al, 1992) was reported to share some homology, especially in the N-

terminal region, with the newly sequenced bacteriocins leucocin A-UAL 187 (Hastings et al, 

1991), pediocin PA-1 (Lozano etal, 1992) and sakacin P (Tichaczek etal, 1992). The 

amino acid sequence of leucocin B-Tal la (Felbc et al, 1994) was reported to be significantly 
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homologous to the sequence of leucocin A-UAL187 (Hastings etal., 1991). A bacteriocin 

produced by Pediococcus acidilactici was shown to have the identical primary amino acid 

sequence as pediocin PA-1 (Henderson et al., 1992) and was, in fact, the same molecule. 

Staphylococcin IS80 (Sahl, 1994) was shown to be identical to epidermin, a lantibiotic, by 

amino acid composition analysis, determination of molecular mass, and limited N-terminal 

sequencing. 

Purified propionicin PLG-1 obtained from reversed-phase HPLC was stable to storage in 

the lyophilized state at both 4°C and -60°C for three months. No significant change in activity 

was seen in samples stored over this period (data not shown). 

In conclusion, we have obtained a highly purified preparation of propionicin PLG-1 by 

sequential steps of ammonium sulfate precipitation, ion exchange chromatography, and 

reversed-phase HPLC. The amino acid sequence of propionicin PLG-1 indicates that it is 

different fi-om other previously reported bacteriocins from lactic acid bacteria. 

ACKNOWLEDGMENTS 

We are indebted to Dr. Earl Hammond who provided use of his HPLC, Dr. Alan Myers 

who provided access to the SWISS-PROT data base in Sequence Analysis Software Package, 

the Iowa State University Protein Facility for amino acid composition and sequence analysis, 

and the Iowa State University Fermentation Facility for use of fermentation equipment. This 



www.manaraa.com

80 

work was supported by the Binational Agricultural Research and Development Fund (BARD), 

grant # US-2080-91. 

REFERENCES 

Barefoot, S. F. and T. R. Klaenhanuner. 1984. Purification and characterization of the 
Lactobacillus acidophilus bacteriocin lactacin B. Antimicrob. Agents Chemother. 
26:328-334. 

Chicz, R. M. and F. E. Regnier. 1990. High-performance liquid chromatography: effective 
protein purification by various chromatographic modes, p. 392-421. In M. P. Deutscher 
(ed.). Guide to Protein Purification. Academic Press, Inc., San Diego. 

Devereux, J., P. Haeberli and O. Smithies. 1984. A comprehensive set of sequence analysis 
programs for the VAX. Nucleic Acids Res. 12:387-395. 

Edman, P. and G. Begg. 1967. A protein sequenator. Eur. J. Biochem. 1:80-81. 

Felix, J. v., M. A. Papathanasopoulos, A. A. Smith, A. V. Holy and J. W. Hastings. 1994. 
Characterization of leucocin B-Tal la: a bacteriocin fi-om Leuconostoc camosum Tal la 
isolated fi'om meat. Curr. Microbiol. 29:207-212. 

Garver, K. I. and P. M. Muriana. 1994. Purification and partial amino acid sequence of 
curvaticin FS47, a heat-stable bacteriocin produced by Lactobacillus curvatus FS47. 
Appl. Environ. Microbiol. M;2191-2195. 

Grinstead, D. A. and S. F. Barefoot. 1992. Jenseniin G, a heat-stable bacteriocin produced by 
Propionibacterium jensenii P126. Appl. Environ. Microbiol. ^:215-220. 

Hastings, J. W., M. Sailer, K. Johnson, K. L. Roy, J. C. Vederas and M. E. Stiles. 1991. 
Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene fi'om 
Leuconostocgelidum. J. Bacteriol. 173:7491-7500. 

Hechard, Y., B. Derijard, F. Leteller and Y. Cenatiempo. 1992. Characterization and 
purification of mesentericin Y105, an dsiix-Listeria bacteriocin fi'om Leuconostoc 
mesenteroides. J. Gen. Microbiol. 138:2725-2731. 



www.manaraa.com

81 

Henderson, J. T., A. L. Chopko and P. D. van Wassenaar. 1992. Purification and primary 
structure of pediocin PA-1 produced by Pediococcus acdilactici PAC-l.O. Arch. 
Biochem. Biophys. 295:5-12. 

Hoick, A. L., L. Axelsson, S.-E.Birkeland, T. Aukrust and H. Blom. 1992. Purification and 
amino acid sequence of sakacin A, a bacteriocin fi'om Lactobacillus sake Lb706. J. Gen. 
Microbiol. 138:2715-2720. 

Hoick, A. L., L. Axelsson and U. Schillinger. 1994. Purification and cloning of piscicolin 61, 
a bacteriocin fi'om Camobacteriumpiscicola LV61. Curr. Microbiol. 29:63-68. 

Holo, H., O. Nilssen and I. F. Nes. 1991. Lactococcin A, a new bacteriocin fi'om 
Laciococcus lactis subsp. cremoris: isolation and characterization of the protein and its 
gene. J. Bacteriol. 173:3879-3887. 

Joerger, M. C. and T. R. Klaenhanuner. 1986. Characterization and purification of helveticin 
J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus 
helveticus 481. J. Bacteriol. 167:439-446. 

Klaenhanuner, T. R. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70:337-349. 

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of 
bacteriophage T4. Nature (London) 227:680-685. 

Larsen, A. G., F. K. Vogensen and J. Josephsen. 1993. Antimicrobial activity of lactic acid 
bacteria isolated fi'om sour doughs: purification and characterization of bavaricin A, a 
bacteriocin produced by Zac^o6ac/7/u5 6avar/cu5 Ml401. J. Appl. Bacteriol. 75:113-
122. 

Lozano, J. C. N., J. Nissen-Meyer, K. Sletten, C. Pelaz and I. F. Nes. 1992. Purification and 
amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. J. Gen. 
Microbiol. 138:1985-1990. 

Lyon, W. J. and B. A. Glatz. 1991. Partial purification and characterization of a bacteriocin 
produced by Propionibacterium thoenii. Appl. Environ. Microbiol. 57:701-706. 

Lyon, W. J. and B. A. Glatz. 1993. Isolation and purification of propionicin PLG-1, a 
bacteriocin produced by a strain of Propionibacterium thoenii. Appl. Environ. 
Microbiol. 59:83-88. 



www.manaraa.com

82 

Marugg, J. D., C. F. Gonzales, B. S. Kunka, A. T. Ledeboer, M. J. Pucci, M. Y. Toonen, 
S. A. Walker, L. C. M. Zoetmulder and P. A. Vandenbergh. 1992. Cloning, expression, 
and nucleotide sequence of genes involved in production of pediocin PA-1, a bacteriocin 
fromPediococcusacdilacticiPACl.O. Appl. Environ. Microbiol. 58:2360-2367. 

Mortvedt, C. I., J. Nissen-Meyer, K. Sletten and I. F. Nes. 1991. Purification and amino acid 
sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L4S. Appl. 
Environ. Microbiol. 52:1829-1834. 

Muriana, P. M. and T. R. Klaenhammer. 1991. Purification and partial characterization of 
lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl. Environ. 
Microbiol. 57:114-121. 

Muriana, P. M. and J. B. Luchansky. 1993. Biochemical methods for purification of 
bacteriocins, p. 41-61. In D. G. Hoover and L. R. Steenson (eds.), Bacteriocins of Lactic 
Acid Bacteria. Academic Press, Inc., San Diego. 

Nissen-Meyer, J., H. Holo, L. S. Havarstein, K. Sletten and I. F. Nes. 1992. A novel 
lactococcal bacteriocin whose activity depends on the complementary action of two 
peptides. J. Bacteriol. 174:5686-5692. 

Nissen-Meyer, J., A. G. Larsen, K. Sletten, M. Daeschel and I. F. Nes. 1993. Purification and 
characterization of plantaricin A, i Lactobacillus plantarum bacteriocin whose activity 
depends on the action of two peptides. J. Gen. Microbiol. 139:1503-1509. 

Piard, J.-C., P. M.. Muriana, M. J. Desmazeaud and T. R. Klaenhammer. 1992. Purification 
and partial characterization of lacticin 481, a lanthionine-containing bacteriocin produced 
by iMctococcus lactis subsp. lactis CNRZ 481. Appl. Environ. Microbiol. M'279-284. 

Ross, K. F., C. W. Ronson and J. R. Tagg. 1993. Isolation and characterization of the 
lantibiotic salivaricin A and its structural gene salA fi'om Streptococcus salivarius 20P3. 
Appl. Environ. Microbiol. 59:2014-2021. 

Sahl, H. 1994. Staphylococcin 1580 is identical to the lantibiotic epidermin: implications for 
the nature of bacteriocins from gram-positive bacteria. Appl. Environ, \ficrobiol. 
^:752-755. 

Stryer, L. 1988. Connective-tissue proteins, p. 261-280. In L. Stryer (ed.). Biochemistry, 
W. H. Freeman and Company, New York. 

Stoscheck, C. M. 1990. Quantitation of protein, p. 50-68. In M. P. Deutscher (ed), Guide 
to Protein Purification. Academic Press, Inc., San Diego. 



www.manaraa.com

S3 

Tagg, J. R., A. S. Dajani and L. W. Wannamaker. 1976. Bacteriocins of gram-positive 
bacteria. Bacteriol. Rev. 40:722-756. 

Tichaczek, P. S., J. Nissen-Meyer, I. F. Nes, R. F. Vogel and W. P. Hammes. 1992 
Characterization of the bacteriocins curvacin A from Lactobacillus curvaticus LTHl 174 
and sakacin P from L. sake LTH673. System. Appl. Microbiol. 15:460-468. 



www.manaraa.com

Table 1. Purification of propionicin PLG-1 

Sample after given step Vol 

(ml) 

Propionicin 

activity 

(AU/ml) 

Total 

propioncin 

activity (AU)' 

Protein 

concentration 

(mg/ml)'' 

Total 

protein 

(mg) 

Sp activity 

(AU/mg) 

Activity 

recovered 

(%) 

Fold 

purification 

Culture supernatant 1,15 

0 

2.5 2,875 3.36 3,864 0.74 100 1 

Ammonium sul&te 

precipitation and PEG 

concentration 

2.7 2,560 6,912 10.77 29.08 237.69 240.4 321 

Ion exchange 21 217 4,557 0.2114 4.44 1,026.4 158.5 1,387 

Ion exchange and PEG 

concentration" 

0.4 11,393 4,557 11.10 4.44 1,026.4 158.5 1,387 

Injection onto HPLC* 20 Ml 11,393 227.86 11.10 0.2220 1,026.4 158.5 1,387 

Ci« reversed-phase 

HPLC 

8 25 200 0.0134 0.1072 1,865.7 139.1 2,521 

* Bacteriocin activity was determined by the weU-difiusion assay 

Protein concentration was determined by BCA method 

' Volume of active samples from ion exchange counm reduced from 21 ml to 0.4 ml by PEG concentration. All values for ion 

exchange were recalculated based on this volume change. 

** Only 20 ^1 of concentrated sample applied to HPLC. All values were recalculated based on this volume. 



www.manaraa.com

85 

Table 2. Changes in purification and analytical methods fi'om previous study 

Lyon and Glatz (1993) This study 

Indicator organism P. acidipropionici P5 Lactobacillus delbrueckii 

ATCC 4797 

Ammonium sulfate 50-75% saturation* 75% saturation 

precipitation 

Ion exchange 2.5 X 35 cm column 1.6 X 23 cm column 

chromatography MES buffer (pH 6.5) MES buffer + 0.1% Tween 80 

(pH6.5) 

a Bio-Gel concentrator PEG concentration 

Final purification step Rotofor isoelectric focusing Reversed-phase HPLC 

SDS-PAGE 18% Polyacrylamide gel 10-20% Gradient gel 

Coomassie blue staining Silver staining (requires 10-

(requires 0.1-1.0 fig of 100 ng of protein per band for 

protein per band for visualization); 10 to 100-fold 

visualization) increase in sensitivity over 

Coomassie blue staining 

Protein determination Lowry method (2-100 fig) BCA method (0.2-50 fig); 10-

fold increase m sensitivity 

over Lowry method 

* Reported as 40-60% saturation in reference, but recalculated as 50-75% in current study. 
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Table 3. Amino acid composition of propionicin PLG-1 

Amino acid Mole% Residues per molecule 

Alanine (Ala) 23.79 24 

Arginine (Arg) 6.27 6 

Aspartic acid (Asp) 6.91 7 

Glutamic acid (Glu) 4.37 4 

Glycine (Gly) 20.26 20 

Isoleucine (lie) 11.75 12 

Leucine (Leu) 2.84 3 

Lysine (Lys) 3.85 4 

Proline (Pro) 1.21 1 

Serine (Ser) 5.95 6 

Threonine (Thr) 4.11 4 

Tyrosine (Tyr) 3.15 3 

Valine (Val) 4.77 5 

Total number of amino acids 99 
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Figure 1. Elution profile of propionicin PLG-1 in CM-Sepharose column chromatography. 

• A280, O bacteriocin activity. 
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Figure 2. Cig reversed-phase HPLC analysis of propionicin PLG-1 obtained from ion 
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Figure 3. SDS-PAGE analysis of fractions recovered from reversed-phase HPLC that contain 

propionicin PLG-1. (A) Lanes 1, 3, and 10, empty; Lanes 2 and 8, MW standards 

(top to bottom, bovine serum albumin [MW 66,000], chicken egg ovalbumin [MW 

45,000], rabbit muscle glyceraldehyde-3-phosphate dehydrogenase [MW 36,000], 

bovine erythrocytes carbonic anhydrase [MW 29,000], bovine pancreas tiypsinogen 

[MW 24,000], soybean trypsin inhibitor [MW 20,000], bovine milk a-lactalbumin 

[MW 14,200], bovine lung aprotinin [MW 6,500]; Lanes 4, 5, 6, 7, and 9, HPLC 

fractions 33, 34,35,36, and 37, respectively. (B) Lanes 1, 3, and 10, empty; Lanes 

2 and 9, MW standards (same as A); Lanes 4, 5, 6, 7, and 8, HPLC fractions 38, 

39,40,41, and 42, respectively. 
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ENHANCED BACTERIOCIN PRODUCTION BY PROPIONIBACTERIUM THOENII 

IN FED-BATCH FERMENTATION 

A paper prepared for submission to the Journal of Applied Microbiology and Biotechnology 

Hyun-Dong Paik and Bonita A. Glatz 

ABSTRACT 

Culture growth, organic acid production and bacteriocin sjuthesis by Propionibacterium 

thoenii P127 were studied during fed-batch fermentations conducted for 504 h in a semi-

defined medium. In two small-scale fed-batch fermentations, avearge concentrations of viable 

cells were higher than in batch fermentations: 2.2 x lO' cells/ml vs. 3.7 x 10* cells/ml. 

Propionic acid concentration averaged 35.7S g/1 at the end of fed-batch fementation, and 

maximum bacteriocin titers were 184.32 AU/ml and 145.92 AU/ml in these two 

fermentations. After reaching the maximum value, bacteriocin activity dropped sharply over 

15-17 days of continued incubation. Large quantities of propionicin PLG-1 could be obtained 

in large-scale fed-batch fermentation, but the activity per ml was lower than in small-scale fed-

batch fermentations. Fed-batch fermentation shows promise as a method to obtain high 

concentrations of batceriocin as well as organic acids produced by the propionibacteria. 
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INTRODUCTION 

Bacteriocins are defined as bactericidal proteins with a narrow spectrum of activity 

targeted toward species related to the producer culture (Tagg et ai, 1976). Numerous 

bacteriocins fi-om Gram-positive bacteria, particularly fi'om lactic acid bacteria, have been 

identified and proposed as possible food preservatives (Ray, 1992). Among the dairy 

propionibacteria, two bacteriocins have been reported: propionicin PLG-1 fi'om P. thoenii 

PI27 (Lyon and Glatz, 1991; Lyon and Glatz, 1993) andjenseniinGfi'omP.7e«Lse«/7P126 

(Grinstead and Barefoot, 1992). Propionicin PLG-1 has a broad spectrum of activity against 

various microorganisms (Lyon and Glatz, 1991); has been purified to homogeneity (Lyon and 

Glatz, 1993; Paik and Glatz, 1995); and has a calculated molecular weight of9,327.7 (Paik 

and Glatz, 1995). 

The bacteriocin nisin has been studied most extensively and factors affecting its 

production have been defined most completely (Egorov et al., 1972: Kalra and Dudani, 1974; 

Vuyst and Vandanmie, 1992; Vuyst and Vandamme, 1993). For other Gram-positive 

bacteriocins, some improvements in production techniques and conditions have also been 

reported. For example, Biswas et al. (1991) optimized growth medium composition to 

improve production of pediocin AcH. Culture pH has been shown to affect bacteriocin 

production. Maximum activity was obtained at pH 5.5 for lactococcin 140 (Parente et al, 

1994); at pH 6.5 for piscicolin 61 (Schillinger et al, 1993); at pH 6.0 for bavaricin MN 

(Kaiser and Montville, 1993); and at pH 7.0 for propionicin PLG-1 (Lyon and Glatz, 1993). 
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In contrast, production of acidocin 8912 was unchanged in the pH range S to 7, but was 

affected by incubation temperature (Kanatani et al., 1992). 

Optimal production of bacteriocin can occur at different growth phases. Lactococcin 140 

is produced during the exponential phase (Parente et al., 1994; Vuyst and Vandamme, 1992), 

while many bacteriocins are made during late exponential and early stationary phases: nisin 

(Hurst, 1981); helveticin J (Joerger and Klaenhammer, 1986); lactocin S (Mortvedt and Nes, 

1990); pediocin AcH (Biswas et al., 1991); propionicin PLG-1 (Lyon and Glatz, 1993); and 

pediocinSJ-1 (Schved e/a/., 1993). 

Most bacteriocins have been produced in batch culture, but continuous culture 

production of bavaricin MN yielded twice the level of bacteriocin activity over that seen in 

batch fermentations (Kaiser and Montville, 1993). This level was maintained independent of 

growth rate for 345 h. 

Propionicin PLG-1 has been produced in batch cultures incubated for 14 days, but 

measured levels of activity have been low (Lyon and Glatz, 1993). We have used fed-batch 

culture in our laboratory to increase production of propionic and acetic acids by strains of 

propionibacteria (Paik and Glatz, 1994). In this paper we report on the use of fed-batch 

culture techniques to increase bacteriocin production by P. thoenii P127. 
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MATERIALS AND METHODS 

Bacterial cultures and media. Producer strainPropionibacterium thoenii PI27 was 

maintained as described previously by Lyon and Glatz (1991). Working cultures were 

propagated in sodium lactate broth (NLB) without shaking at 32''C. The NLB and sodium 

lactate agar (NLA) were prepared as described by Hofherr et al. (1983) and contained 0.6% 

sodium lactate. Indicator strain Lactobacillus delbrueckii ATCC 4797 was obtained from Dr. 

Susan Barefoot (Clemson University, Clemson, SC). Stock cultures were maintained at -dO'C 

in Lactobacilli MRS broth (Difco, Detroit, MI) containing 20% glycerol. Working cultures 

were grown in MRS broth without shaking at 37''C. 

Bacteriocin assay. The well diffusion assay as described by Lyon and Glatz (1993) was 

modified as follows. The basal layer of plain agar contained 2.5% agar, 0.85% NaCl, and 

0.1% Tween 80 and was 5 mm deep. After 7-mm diameter wells were cut, plates were 

incubated at 37°C for 2 h or at room temperature for 2 days to assure dryness of the agar. 

Serially diluted samples of bacteriocin (200 (xl) were added to wells. After the samples had 

difiused into the agar, the agar layer was flipped into the lid of the plate, and then the plates 

were overlayed with 5 ml soft (0.7% agar) MRS agar that contained 10  ̂cells of L. 

delbrueckii per overlay. Plates were incubated anaerobically at 37°C for 12 h before 

diameters of zones of inhibition were measured. Activity units (AU) per ml of the original 

culture were calculated from the reciprocal of the highest dilution that produced a detectable 

zone of inhibition (approx. 9 mm, i.e. 1 mm beyond well diameter). If the inhibition zone at 



www.manaraa.com

95 

this dilution was large (> 11 nun diameter), additional incremental dilutions were assayed, to 

define the titer more precisely. Changes in volume and concentration factors between original 

culture and purified protein were taken into account in making calculations. All assays were 

performed in duplicate, and results presented are means of duplicate trials. 

Fermentations. Small-scale batch and fed-batch fermentations were performed in a 

Biostat M fermenter (1.5 L working volume; B. Braun Biotech, Ailentown, PA). Large-scale 

fed-batch fermentation was performed in a Bioengineering NLF22 fermenter (14 L working 

volume; Bioengineering AG, Wald, Switzerland). Fermentation medium was MLB with 1.2% 

sodium lactate rather than 0.6% sodium lactate as substrate. The fermentation was started 

with a 1% (vol/vol) inoculum of an 18-h culture in NLB, and was incubated at 32°C. The pH 

was controlled at 7.0 ± 0.1 by the addition of 3M NaOH. Agitation rate was 150 rpm in the 

Biostat M fermenter and 100 rpm in the Bioengineering NLF22 fermenter; no aeration was 

provided. Fed-batch fermentations were started as batch fermentations and were incubated 

for up to 504 h. Sodium lactate was first fed at about 48 h of incubation and was added every 

12 h to give a final concentration in the medium of 0.6% (fermentations 1 and 3) or 0.9% 

(fermentation 2). In addition, a 20X-concentrated preparation of NLB (without lactate) was 

fed every 7 days to replenish about 15% of the other nutrients in the medium at each feeding. 

Samples were taken every 12-24 h. 

Recovery of propionicin PLG-1. Partially purified propionicin PLG-1 was obtained as 

described by Lyon and Glatz (1993) with several modifications. Ammonium sulfate was 

slowly added to the culture supernatant to 75% saturation at 4°C, with constant stirring, over 
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about 4 h. Slow stirring was continued for an additional 30 min at 4°C. Precipitated proteins 

were pelleted by centrifligation at 24,000 x g for 30 min at 4°C, resuspended in 20 mM 2-N-

morpholino-ethane-sulfonic acid (MES; Sigma Chemical Co., St Louis, MO) buffer, pH 6.5, + 

0.1% Tween 80 and dialyzed against 2 L of 10 mM MES buffer, pH 6.5, + 0.\% Tween 80 

for 12-18 h in Spectra-Por no. 3 dialysis tubing (molecular weight cutoflF, 3,500; Spectrum 

Medical Industries, Los Angeles, CA). 

Dialysis against polyethylene glycol. When reduction of sample volume was required, 

the sample in dialysis tubing was placed in a weighboat containing about 50 g of polyethylene 

glycol (PEG; MW 15,000-20,000; Sigma Chemical Co., St Louis, MO) and incubated for 1-3 

hat4°C. 

Effect of sodium lactate on growth of P. thoenii P127. To test the effect of sodium 

lactate concentration on growth of strain P127, an 18-h culture grown in NLB was inoculated 

at 1% (vol/vol) into NLB that contained various concentrations of sodium lactate between 0.6 

and 8%. The tubes were incubated at 32°C for 4 days and growth was followed by measuring 

absorbance at 550 nm (Asso). The relative cell mass at 18 h was calculated according to the 

following equation: Relative cell mass of culture X = [Asso of culture X / Asso of culture in 

0.6% sodium lactate] x 100, where culture X = culture grown with specified concentration of 

sodium lactate. Doubling times (td) and the specific growth rates (^) were calculated for the 

exponential growth phase of each culture, from the equation p.=ln2/t<i (Kaiser and Montville, 

1993). 



www.manaraa.com

97 

Viable cell determination. Viable cells were enumerated on NLA plates incubated 

anaerobically for 4 days at 32°C. 

Organic acid determinations. Lactic, acetic, and propionic acid concentrations were 

determined by high-performance liquid chromatography (HPLC) as previously described 

(Woskow and Glatz, 1991). 

RESULTS AND DISCUSSION 

Batch fermentations. To produce the large quantities of bacteriocins needed for studies 

of their effectiveness in controlling microbial growth or in preserving foods, fermentations that 

yield high titers of the bacteriocins are needed. However, to date we have not been able to 

produce propionicin PLG-1 at levels that match the titers reported for other bacteriocins. 

Maximum titers for propionicin in batch culture have been 0.6 AU/ml in NLB and 2.7 AU/ml 

in a mixture of beet molasses and com steep liquor (Paik et ai, 1995). Similarly, jenseniin G, 

a bacteriocin produced by P. jensenii PI26, seems to be produced at low concentration and is 

detected only in agar cultures or in concentrated (50 to lOOX) broth cultures (Grinstead and 

Barefoot, 1992). Seemingly, these dairy propionibacteria produce only low concentrations of 

bacteriocin in batch culture. 

Because production of propionicin PLG-1 occurs after cells have reached stationary 

phase and seems to follow typical kinetics of secondary metabolite synthesis (Lyon and Glatz, 

1993), the use of fed-batch culture techniques to add nutrient(s) at the end of batch 
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fermentation and thus extend the time the culture is maintained in a metabolically active state 

would seem to promote bacteriocin synthesis. Such techniques are used frequently for 

production of other nongrowth-associated metabolites, such as antibiotics (Brown, 1990). 

Before starting fed-batch fermentations, a simple batch fermentation in NLB at controlled pH 

7.0 was performed to obtain data for comparison. Results are shown in Fig. 1. 

All of the substrate lactate was consumed within 48 h. Propionic and acetic acid 

concentrations peaked at about 4.S g/1 and 2.0 g/1, respectively, by 4 days of incubation. The 

decrease in propionic acid and the increase in acetic acid upon extended incubation are 

unexplained and have not been observed previously, but typical batch fermentations for 

organic acid production are usually incubated for no more than 4 to 5 days (Babuchowski et 

ai, 1993). Organic acid production has usually not been followed in bacteriocin-producing 

fermentations by strain PI27, because this strain has not been considered to be a strong acid 

producer. 

Bacteriocin activity was first detected at day 6, significantly earlier than the 10 to 12 days 

previously reported for batch fermentations (Lyon and Glatz, 1993). Maximum bacteriocin 

titer, 7.83 AU/ml, was obtained after 14 days of incubation and was significantly higher than 

the previously obtained maximum titer in NLB (0.6 AU/ml). Both the earlier detection of 

bacteriocin and the higher titer probably result fi'om improvements made both in protein 

precipitation fi'om the culture broth and in the well diffiision assay (Paik et al., 1995). 

Effect of sodium lactate on growth of strain P127. Before supplying sodium lactate as 

the nutrient feed in fed-batch fermentation, it was necessary to determine at what lactate 
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concentration culture growth was inhibited. Growth of strain PI 27 at different initial 

concentrations of sodium lactate is illustrated in Table 1. With increasing lactate 

concentration, both maximum specific growth rate and cell mass reached by 18 h decreased 

significantly. Only at 1.2% sodium lactate was growth essentially not inhibited. Therefore, a 

starting concentration of 1.2% sodium lactate was used in fed-batch fermentations, and 

additional feedings of sodium lactate were designed to maintain subinhibitory concentrations 

(less than 1.2%) in the fermenter. 

Small-scale fed-batch fermentations. Two small-scale (1.5 liters) fed-batch 

fermentations were performed. Both were started as batch fermentations with 1.2% sodium 

lactate, and feeding of additional lactate was started at about 48 h, when the initial lactate was 

consumed. The amount of lactate fed at each 12-h interval differed in the two fermentations, 

to achieve a final concentration in the fermenter of 0.6% sodium lactate in fermentation 1, vs. 

0.9% in fermentation 2. Because lactate consumption was rapid in these fermentations, more 

lactate was fed in fermentation 2 to reduce the length of time the culture was kept with no 

residual lactate between feedings. The addition of concentrated MLB (without lactate) every 

7 days was designed to insure that no other nutrient became limiting. Results are presented in 

Fig. 2 and 3. 

Maximum viable cell concentrations were at least 10-fold higher in the fed-batch 

fermentations than in batch fermentation, although the viable cells tended to decrease upon 

extended incubation in fermentation 2. Initial lactate was consumed within 48 h. No residual 

lactate was detected in samples withdrawn immediately before each feeding, which indicates 
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that all the lactate provided at each feeding was consumed. The only exception to this was at 

days 8 and 9 of fermentation 2, when some residual lactate was detected. Organic acid 

concentrations increased throughout the fermentations, and reached maximum levels of over 

30 g/1 propionic acid and over 10 g/1 acetic acid. The organic acids were removed from the 

bacteriocin during ammonium sulfate precipitation of proteins from the culture supernatant, so 

they did not contribute to the measured antimicrobial activity of bacteriocin preparations. 

Maximum titers of bacteriocin were significantly higher than in batch fermentations: 184.32 

AU/ml at day 17 in fermentation I, and 145.92 at day 15 in fermentation 2. However, 

bacteriocin activity dropped sharply almost immediately after the maximum titer was reached. 

This drop suggests the formation of an inhibitor or the effect of extracellular proteolytic 

activity. 

Large-scale fed-batch fermentation. The fed-batch fermentation was next scaled up to 

14 liters in a Bioengineering NLF22 fermenter. Because the bacteriocin titer was higher in 

fermentation 1 than in fermentation 2, a feeding schedule similar to that of fermentation 1 (i.e. 

0.6% sodium lactate added every 12 h) was used. Results are shown in Fig. 4. 

Consumption of lactate and production of propionic and acetic acids were similar to 

results seen in small-scale fed-batch fermentations, although viable cell concentrations were 

slightly lower than in small-scale fermentations. The maximum bacteriocin titer (99.84 

AU/ml), while still significantly higher than in batch fermentation, was lower than the titers 

obtained in small-scale fed-batch fermentations. Again, bacteriocin activity dropped but not 

quite as sharply as in the previous fermentations. 
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Data from the three fed-batch fementations are compared to those from the reference 

batch fermentation in Table 2. Significantly higher final concentrations of organic acids and 

bacteriocin, as well as higher viable cell concentrations, were obtained in the fed-batch 

fermentations. However, the amount of lactate consumed in the fed-batch fermentations was 

also much higher than in batch fermentation, so the yields of acids and bacteriocin from 

substrate consumed were lower in fed-batch than in batch fermentation. This suggests that a 

significant amount of the substrate must be used for cell maintenance or for metabolic 

processes that do not yield organic acids or bacteriocin. On the other hand, the amount of 

organic acids and bacteriocin produced per cell, as well as the overall productivity for both 

organic acids and bacteriocin, were much higher in the fed-batch than in batch fermentations. 

These values illustrate the advantage in using fed-batch fermentation to produce high 

concentrations of bacteriocin efficiently. The possibility of sudden and significant loss of 

bacteriocin titer upon extended incubation requires that the titer be carefully monitored. 

The three fed-batch fermentations tended to differ the most in the production of 

bacteriocin. Whether the differences between the two small-scale fermentations are significant 

or simply illustrate the amount of variation that might be expected among fermentations 

cannot be determined until additional replicate fermentations are performed. However, the 

difference in results in the large-scale fermentation might be attributed to problems associated 

with scale-up. The dimensions (diameter vs. height), head space volume, and number and 

type of impeller were different between the large and small fermenters. These parameters can 

afifect the amount of oxygen dissolved in the medium and thus the kinetic behavior of 
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microorganisms influenced by oxygen (Kossen and Oosterhuis, 198S). Although no aeration 

was provided in any fermentation and dissolved oxygen was not monitored, it is possible that 

the level of dissolved oxygen was slightly higher in the large than in the small fermenter, and 

that conditions were not optimal for the anaerobic propionibacteria in the large fermenter. 

These results have shown that propionicin PLG-1 production can be significantly 

increased by employing fed-batch rather than batch fermentation methods. Further 

improvements may be made by using a beet molasses/com steep liquor medium rather than 

MLB. 
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Table 1. Effect of sodium lactate concentration on growth of P. thoenii PI 27 in sodium 

lactate broth 

% Sodium lactate Min«(h-'y Relative cell mass {Vof 

0.6 0.135 100.0 

1.2 0.131 92.6 

1.8 0.121 66.4 

2.4 0.101 43.6 

3.0 0.110 29.1 

4.0 0.063 10.5 

5.0 ND' 6.4 

6.0 ND 6.4 

7.0 ND 5.5 

8.0 ND 2.4 

* Determined from the exponential growth phase of the culture 

^ Obtained by dividing the absorbance of each culture by the absorbance of that culture in 

NLB (0.6% sodium lactate) at 18 h. 

® Not determined. 
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Table 2. Comparison of data from batch, small-scale and large-scale fed-batch fermentations 

Type Culture Lactate Average Concentration'' Yp/s' Yp/x' Overall productivity 

time (d)" consumed viable AA' PA' BA' AA PA BA AA PA BA AA PA BA 

m cells/ml (g or AU/ml) (g/g) (g/g) (AU/g) (gorAU/10"cells) (gorAU/l/d) 

Batch 14 6.2 3.7 X 10* 2.5 3.4 7.8 0.41 0.55 1,255 0.68 0.92 2,105 0.18 0.25 560 

Fed-batch 1 17 139.1 2.1 X 10' 11.8 31.8 184.3 0.08 0.23 1,325 0.55 1.49 8,613 0.69 1.87 10,840 

Fed-batch 2 15 165.4 2.2 X 10' 10.9 30.9 145.9 0.07 0.19 882 0.49 1.38 6,514 0.73 2.06 9,730 

Fed-batch 3 17 132.4 8.9 X 10* 11.4 31.0 99.8 0.09 0.23 754 1.28 3.48 11,205 0.67 1.82 5,870 

(large-scale) 

'Time at which bacteriocin was at maximum titer. 

'' Maximum concentration obtained. 

® Abbreviations; AA; acetic acid, PA: propionic acid, BA; bacteriocin, Yp/,; yield coefficient based on lactate consumed (g acids 

or AU bacteriocin/g lactate consumed), Yp/*: yield coefficient based on average number of viable cells (g acids or AU 

bacteriocin/lO" viable cells) 
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Figure 1. Culture growth and production of organic acids and bacteriocin in batch 

fermentation of NLB at controlled pH 7.0. • Log cfu/ml, A lactic acid, 

# acetic acid, • propionic acid, O bacteriocin activity. 
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Figure 2. Culture growth and production of organic acids and bacteriocin in small-scale fed-

batch fermentation 1 with feeding of 0.6% sodium lactate at 48 h and every 12 

thereafter. • Log cfu/ml, A lactic acid, • acetic acid, • propionic acid, 

O bacteriocin activity. 
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Figure 3. Culture growth and production of organic acids and bacteriocin in small-scale fed-

batch fermentation 2 with feeding of 0.9% sodium lactate at 48 h and every 12 h 

thereafter. • Log cfli/ml, • lactic acid, • acetic acid, • propionic acid, 

O bacteriocin activity. 
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Figure 4. Culture growth and production of organic acids and bacteriocin in large-scale fed-

batch fermentation 3 with feeding of 0.6% sodium lactate at 48 h and every 12 h 

thereafter. • Log cfli/ml, A lactic acid, • acetic acid, • propionic acid, 

O bacteriocin activity. 
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I l l  

SUMMARY 

A number of improvements in the production and detection of propioncin PLG-1 were 

reported in this dissertation. 

The sensitivity and reproducibility of the standard well diffijsion assay system for 

bacteriocin activity were increased by standardizing methods used to prepare assay plates; by 

optimizing agar concentration and well diameter; by changing the indicator organism to 

Lactobacillus delbrueckii ATCC 4797; and by changing the composition of the base agar to a 

simple medium containing 2.5% agar, 0.85% NaCl and 0.1% Tween 80. 

Recovery of bacteriocin from the culture supernatant was improved by adding 0.1% 

Tween 80 to buffer used for dialysis and resuspension of precipitated protein. During dialysis, 

the Tween 80 might help protem aggregates dissociate, thus releasing more free molecules of 

the bacteriocin that could then difiuse more easily in the well difrusion assay. 

In batch fermentations, improved bacteriocin production was obtained under pH-

controlled conditions in a fermenter. The greatest activity of propionicin PLG-1 was obtained 

in cultures grown in a 3:1 (vol/vol) mixture of beet molasses: com steep liquor media. The 

activity in this medium was S times greater than in sodium lactate broth, but still much less 

than that reported for other bacteriocins. 

To increase bacteriocin production further, fed-batch fermentation methods were also 

examined. Production of organic acids as well as bacteriocin were followed in both small-
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scale and large-scale fed-batch fermentations. Average concentrations of viable cells were 

about 10-fold higher than in batch fermentations. Organic acid concentrations reached 

maxima of over 30 g/1 propionic acid and over 10 g/1 acetic acid. Ma:dmum bacteriocin 

activities were over 20 times higher than those obtained in simple batch fermentations. 

Bacteriocin activity dropped sharply with continued incubation, suggestmg the formation of 

an inhibitor or the effect of proteolytic enzyme activity. The bacteriocin titer per cell was 

lower in large-scale fed-batch fermentation than in small-scale fed-batch fermentations. This 

difference might be attributed to problems associated with scale-up, particularly dissolved 

oxygen concentration differences. Further optimization of fermentation conditions and use of 

the beet molasses-com steep liquor medium should improve bacteriocin production in fed-

batch fermentation. 

Propionicin PLG-1 was purified to homogeneity by ammonium sulfate precipitation, ion 

exchange column chromatography, and reversed-phase high-performance liquid 

chromatography (HPLC). Slow addition of ammonium sulfate (75% saturation) plus 

continued stirring for at least 3 h are recommended for best bacteriocin recovery. In ion 

exchange chromatography, use of a small column (1.6 x 23 cm) and addition of 0.1% Tween 

80 to the buffer improved bacteriocin recovery and separation. Purified propionicin PLG-1 

was eluted in a single peak fi-om reversed-phase HPLC, and this purified preparation was used 

for amino acid composition and sequence analysis. 

Propionicin PLG-1 has a calculated molecular weight of 9,328 and contains 99 amino 

acid residues. Neutral (Gly) and hydrophobic (Ala, He, Leu, Val, and Pro) residues make up a 
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significant portion of propionicin PLG-1, 20% and 42%, respectively. Such a high proportion 

of neutral and hydrophobic residues is typical of bacteriocins that interact with hydrophobic 

cell membranes. Association of propionicin PLG-1 with other proteins or aggregation of 

propionicin molecules into multimeric forms is the most likely reason why it is seen to elute in 

gel filtration at apparent molecular weights of more than 150,000 and approximately 10,000, 

while under dissociating conditions it elutes at MW 10,000. A ten-amino acid sequence from 

the N-terminal end was identified and compared with sequences fi'om other bacteriocins fi'om 

lactic acid bacteria by searching the SWISS-PROT data bank. No homology of this sequence 

was found in the SWISS-PROT data bank. Therefore, propionicin PLG-1 appears to be 

different fi'om other previously reported bacteriocins fiom lactic acid bacteria. 

Further work with propionicin PLG-1 might be conducted in the following areas; 1) 

Increased production might be obtained through the development of super-producing strains 

by traditional mutation and/or genetic engineering methods. 2) To increase overall 

productivity of the bacteriocin, additional work to optimize fermentation conditions or to use 

novel systems such as a biofilm reactor is needed. 3) Evaluation of inhibitory activity of 

propionicin PLG-1 against pathogenic microorganisms such as Clostridium botulimm and 

Listeria monocytogenes is needed, to determine its potential significance to food safety. 

Inhibition studies should be performed both in laboratory medium and in food systems. 4) If 

propionicin PLG-1 is to be used commercially, rapid tests to detect and quantitate it would be 

usefiil. At MW 10,000 it is probably large enough to elicit antibody production and thus be 

detectable by immunological assays such as an ELISA. Polyclonal or monoclonal antibodies 
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against propionicin would be required. 5) Rather than using purified bacteriocin in foods, it 

may be possible to preserve some fermented foods by adding live cultures of strain PI 27 

either alone or in combination with other desirable strains. 
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